Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 EuroBERT: энкодеры нового поколения.

Исследовательская группа под патронажем Centrale Supélec (Университет Париж-Сакле) выпустила в открытый доступ EuroBERT — семейство мультиязычных энкодеров, обученных на 5 трлн. токенов из 15 языков, включая русский.

EuroBERT сочетает инновационную архитектуру с поддержкой контекста до 8192 токенов, что делает это семейство идеальным для анализа документов, поиска информации, классификации, регрессии последовательности, оценки качества, оценки резюме и задач, связанных с программированием, решением математических задачи.

В отличие от предшественников (XLM-RoBERTa и mGTE), EuroBERT объединил GQA, RoPE и среднеквадратичную нормализацию, чтобы достичь беспрецедентной эффективности производительности даже в сложных задачах. Второе немаловажное преимущество EuroBERT - в обучение помимо текстовых данных были включены примеры кода и решения математических задач.

Самая младшая модель EuroBERT с 210 млн. параметров показала рекордные результаты: в тесте MIRACL по многоязычному поиску её точность достигла 95%, а в классификации отзывов (AmazonReviews) — 64,5%. Особенно выделяется умение работать с кодом и математикой — в бенчмарках CodeSearchNet и MathShepherd EuroBERT опережает аналоги на 10–15%.

▶️Состав релиза:

🟢EuroBERT-210М
🟢EuroBERT-610М
🟢EuroBERT-2.1В

⚠️ EuroBERT можно использовать непосредственно с transformers, начиная с версии 4.48.0

⚠️ Для достижения максимальной эффективности, разработчики рекомендуют запускать EuroBERT с Flash Attention 2

▶️ Пример инференса:

from transformers import AutoTokenizer, AutoModelForMaskedLM

model_id = "EuroBERT/EuroBERT-210m"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)

text = "The capital of France is <|mask|>."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)

# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: Paris


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Коллекция на HF
🟡Arxiv
🖥GitHub (Скоро)


@ai_machinelearning_big_data

#AI #ML #Encoder #EuroBERT
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/DevOPSitsec/1336
Create:
Last Update:

🌟 EuroBERT: энкодеры нового поколения.

Исследовательская группа под патронажем Centrale Supélec (Университет Париж-Сакле) выпустила в открытый доступ EuroBERT — семейство мультиязычных энкодеров, обученных на 5 трлн. токенов из 15 языков, включая русский.

EuroBERT сочетает инновационную архитектуру с поддержкой контекста до 8192 токенов, что делает это семейство идеальным для анализа документов, поиска информации, классификации, регрессии последовательности, оценки качества, оценки резюме и задач, связанных с программированием, решением математических задачи.

В отличие от предшественников (XLM-RoBERTa и mGTE), EuroBERT объединил GQA, RoPE и среднеквадратичную нормализацию, чтобы достичь беспрецедентной эффективности производительности даже в сложных задачах. Второе немаловажное преимущество EuroBERT - в обучение помимо текстовых данных были включены примеры кода и решения математических задач.

Самая младшая модель EuroBERT с 210 млн. параметров показала рекордные результаты: в тесте MIRACL по многоязычному поиску её точность достигла 95%, а в классификации отзывов (AmazonReviews) — 64,5%. Особенно выделяется умение работать с кодом и математикой — в бенчмарках CodeSearchNet и MathShepherd EuroBERT опережает аналоги на 10–15%.

▶️Состав релиза:

🟢EuroBERT-210М
🟢EuroBERT-610М
🟢EuroBERT-2.1В

⚠️ EuroBERT можно использовать непосредственно с transformers, начиная с версии 4.48.0

⚠️ Для достижения максимальной эффективности, разработчики рекомендуют запускать EuroBERT с Flash Attention 2

▶️ Пример инференса:

from transformers import AutoTokenizer, AutoModelForMaskedLM

model_id = "EuroBERT/EuroBERT-210m"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)

text = "The capital of France is <|mask|>."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)

# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: Paris


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Коллекция на HF
🟡Arxiv
🖥GitHub (Скоро)


@ai_machinelearning_big_data

#AI #ML #Encoder #EuroBERT

BY DevOps







Share with your friend now:
tg-me.com/DevOPSitsec/1336

View MORE
Open in Telegram


DevOps Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

DevOps from us


Telegram DevOps
FROM USA