Telegram Group & Telegram Channel
Как я запускал и проводил курс DMIA. Часть вторая

⏭️ Продолжаю историю о том, как мы с командой единомышленников 9 лет обучали людей Data Science бесплатно :)

Постепенно вокруг меня появлялись другие участники.

🥇 В какой-то момент мы скооперировались с Сашей Гущиным, который был очень хорошим кагглером и доходил до топ-5 в мировом рейтинге на Kaggle. Так у нас появилось соревновательное направление.

🤿 С разными другими ребятами мы сделали направление deep learning. Это изначально Арсений Ашуха, который сейчас вовсю занимается наукой, а позже - Никита Селезнев из Яндекса и Таня Савельева, которая впоследствие стала серийным CEO как раз в теме ИИ.

⤴️ Знаковым стал момент, когда к нам присоединилась Эмели Драль и помогла вывести Data Mining in Action на новый уровень. В моём исполнении это всё-таки была немного местечковая, физтеховская тема. Мы познакомились с Эмели, работая вместе в Yandex Data Factory и записывая специализацию на Coursera, стали хорошими друзьями, и сделали намного больше крутых курсов, чем это получилось бы порознь.

🚌 Одним из важных факторов был перевоз курса из Долгопрудного. Это отчасти было задрайвлено тем, что в Долгопрудном было непросто находить аудиторию. В какой-то момент нас выручил ФизТех Парк. Он был недалеко от МФТИ, и там могло разместиться около 500 человек. Но потом стало понятно, что на курс ездят люди со всей Москвы (даже из МГУ доезжали) и как-то не очень правильно концентрировать всё на Физтехе — было бы здорово переместиться куда-то в Москву, чтобы всем было удобнее ездить.

🌍 Эмели, как выпускница РУДН, сразу нашла способы договориться с родным ВУЗом, мы переехали и пару лет пробыли там. К этому моменту у нас сформировались основное направление курса, трек «Индустриальный анализ данных», трек «Спортивный анализ данных» про соревнования по машинному обучению и трек «Глубокое обучение». И в таком качестве мы могли бы достаточно долго существовать, но позже мы познакомились с МИСИСом и переехали к ним.

🤝 Мы начали пытаться как-то дружить с компаниями, то есть договариваться, что они на какую-то небольшую сумму профинансируют курс. Идея была в том, что как минимум эти компании будут представлены, смогут прочитать гостевую лекцию, а как максимум — кого-то наймут на собеседованиях в конце курса.

За год через нас проходила где-то тысяча человек. Не всегда до конца, к концу курса было кратно меньше слушателей, все же у нас давались довольно содержательные знания. Но смысл для нас был в процессе, и в том, что из этого процесса пусть, условно, 25–30% студентов, но выходят, что-то узнав и как-то культурно обогатившись.

🔚 Эта история была бесплатная для студентов, просуществовала она 9 лет, но, к сожалению, уже к концу я не смог нормально её сочетать со своей работой в топ-менеджменте. Основной вывод, который я из этого всего сделал: даже на энтузиазме, при большом желании можно держать большой курс в течение аж 9 лет и привлекать людей. Ну а если под это ещё положить нормальную экономическую модель, будет совсем идеально.

Про экономическую сторону вопроса я немного расскажу в третьей, заключительной части.



tg-me.com/kantor_ai/280
Create:
Last Update:

Как я запускал и проводил курс DMIA. Часть вторая

⏭️ Продолжаю историю о том, как мы с командой единомышленников 9 лет обучали людей Data Science бесплатно :)

Постепенно вокруг меня появлялись другие участники.

🥇 В какой-то момент мы скооперировались с Сашей Гущиным, который был очень хорошим кагглером и доходил до топ-5 в мировом рейтинге на Kaggle. Так у нас появилось соревновательное направление.

🤿 С разными другими ребятами мы сделали направление deep learning. Это изначально Арсений Ашуха, который сейчас вовсю занимается наукой, а позже - Никита Селезнев из Яндекса и Таня Савельева, которая впоследствие стала серийным CEO как раз в теме ИИ.

⤴️ Знаковым стал момент, когда к нам присоединилась Эмели Драль и помогла вывести Data Mining in Action на новый уровень. В моём исполнении это всё-таки была немного местечковая, физтеховская тема. Мы познакомились с Эмели, работая вместе в Yandex Data Factory и записывая специализацию на Coursera, стали хорошими друзьями, и сделали намного больше крутых курсов, чем это получилось бы порознь.

🚌 Одним из важных факторов был перевоз курса из Долгопрудного. Это отчасти было задрайвлено тем, что в Долгопрудном было непросто находить аудиторию. В какой-то момент нас выручил ФизТех Парк. Он был недалеко от МФТИ, и там могло разместиться около 500 человек. Но потом стало понятно, что на курс ездят люди со всей Москвы (даже из МГУ доезжали) и как-то не очень правильно концентрировать всё на Физтехе — было бы здорово переместиться куда-то в Москву, чтобы всем было удобнее ездить.

🌍 Эмели, как выпускница РУДН, сразу нашла способы договориться с родным ВУЗом, мы переехали и пару лет пробыли там. К этому моменту у нас сформировались основное направление курса, трек «Индустриальный анализ данных», трек «Спортивный анализ данных» про соревнования по машинному обучению и трек «Глубокое обучение». И в таком качестве мы могли бы достаточно долго существовать, но позже мы познакомились с МИСИСом и переехали к ним.

🤝 Мы начали пытаться как-то дружить с компаниями, то есть договариваться, что они на какую-то небольшую сумму профинансируют курс. Идея была в том, что как минимум эти компании будут представлены, смогут прочитать гостевую лекцию, а как максимум — кого-то наймут на собеседованиях в конце курса.

За год через нас проходила где-то тысяча человек. Не всегда до конца, к концу курса было кратно меньше слушателей, все же у нас давались довольно содержательные знания. Но смысл для нас был в процессе, и в том, что из этого процесса пусть, условно, 25–30% студентов, но выходят, что-то узнав и как-то культурно обогатившись.

🔚 Эта история была бесплатная для студентов, просуществовала она 9 лет, но, к сожалению, уже к концу я не смог нормально её сочетать со своей работой в топ-менеджменте. Основной вывод, который я из этого всего сделал: даже на энтузиазме, при большом желании можно держать большой курс в течение аж 9 лет и привлекать людей. Ну а если под это ещё положить нормальную экономическую модель, будет совсем идеально.

Про экономическую сторону вопроса я немного расскажу в третьей, заключительной части.

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/280

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Kantor AI from us


Telegram Kantor.AI
FROM USA