Telegram Group & Telegram Channel
Статзначимость в А/В тестах или немного о том, зачем нужна статистика (часть 1/3)

Сейчас я заканчиваю готовить математическую часть нашего курса «База ML» (в частности, модуль по теорверу) и очень плотно работаю с вопросом «а зачем оно надо?». Топ-1 ответом на вопрос, зачем нужны теорвер и статистика в ML (да и не только в нем) по-прежнему остается проверка статистической значимости. В современном мире мы чаще встречаемся с ней в контексте A/B тестов, когда части клиентов показывают одно, части другое, и из этого эксперимента пытаются сделать выводы. В этих постах вас ждет рассказ в трех частях: 1) введение, 2) непосредственно по теме и 3) некоторые интересные моменты, которые тоже полезно обсудить. Кто знает ответы на вопросы, выделенные жирным в этом посте, могут просто пролистать его и переходить сразу ко второму.

Зачем вообще нужны А/В тесты?

Потребность в А/В тестах возникает тогда, когда мы хотим что-то улучшить. Например, взамен какого-то существующего алгоритма персональных рекомендаций товаров или старого интерфейса мобильного приложения внедрить новую версию. А/В тесты как метод отвечают на вопрос: «Как понять, что это правда будет улучшать важные для нас показатели?»

Посмотреть «стало ли продаж больше» и удовлетвориться такой оценкой нововведения — это очень топорный подход, который сработает только когда бизнес-показатели не зависят от времени и нововведение лишь одно. Обычно это не так. Бизнес растет или угасает, бывает «сезон» и «не сезон». Бывает очень много изменений за месяц, и понять, какое именно из них вызвало эффект, невозможно. Однако многие вещи в коммерческих компаниях (даже самых технологичных) и в 2024 году делаются без А/В тестирования. А еще больше — без оценки статзначимости. К А/В тестам не нужно относиться теологически, но стоит понимать силу и возможности инструмента.

Что такое статистическая значимость и A/A тесты?

Допустим, нет пока никакого нововведения, которое вы будете оценивать в А/В тесте, есть пользователи вашего сайта или приложения, и вы просто делите их на две группы и смотрите на результат в каждой (например, на конверсию посещений в покупки на сайте). Такой тест называется А/А тестом, и, наверное, вас не удивит, что даже при хорошем разбиении на группы результаты в них будут немного отличаться.

Статистическая значимость эффекта в А/В тесте, грубо говоря, означает, что различие между группами заметно больше, чем было бы в А/А тесте, т.е. «есть реальный эффект», а не случайные отклонения. Что это значит для бизнеса? То, что хотя бы при сохранении тех же условий, что и во время проведения А/В теста, эффект от нововведения с большой вероятностью будет какое-то время сохраняться (важное уточнение: эффект может затухать со временем, никто не отменял «эффект новизны»).

#математика



tg-me.com/kantor_ai/295
Create:
Last Update:

Статзначимость в А/В тестах или немного о том, зачем нужна статистика (часть 1/3)

Сейчас я заканчиваю готовить математическую часть нашего курса «База ML» (в частности, модуль по теорверу) и очень плотно работаю с вопросом «а зачем оно надо?». Топ-1 ответом на вопрос, зачем нужны теорвер и статистика в ML (да и не только в нем) по-прежнему остается проверка статистической значимости. В современном мире мы чаще встречаемся с ней в контексте A/B тестов, когда части клиентов показывают одно, части другое, и из этого эксперимента пытаются сделать выводы. В этих постах вас ждет рассказ в трех частях: 1) введение, 2) непосредственно по теме и 3) некоторые интересные моменты, которые тоже полезно обсудить. Кто знает ответы на вопросы, выделенные жирным в этом посте, могут просто пролистать его и переходить сразу ко второму.

Зачем вообще нужны А/В тесты?

Потребность в А/В тестах возникает тогда, когда мы хотим что-то улучшить. Например, взамен какого-то существующего алгоритма персональных рекомендаций товаров или старого интерфейса мобильного приложения внедрить новую версию. А/В тесты как метод отвечают на вопрос: «Как понять, что это правда будет улучшать важные для нас показатели?»

Посмотреть «стало ли продаж больше» и удовлетвориться такой оценкой нововведения — это очень топорный подход, который сработает только когда бизнес-показатели не зависят от времени и нововведение лишь одно. Обычно это не так. Бизнес растет или угасает, бывает «сезон» и «не сезон». Бывает очень много изменений за месяц, и понять, какое именно из них вызвало эффект, невозможно. Однако многие вещи в коммерческих компаниях (даже самых технологичных) и в 2024 году делаются без А/В тестирования. А еще больше — без оценки статзначимости. К А/В тестам не нужно относиться теологически, но стоит понимать силу и возможности инструмента.

Что такое статистическая значимость и A/A тесты?

Допустим, нет пока никакого нововведения, которое вы будете оценивать в А/В тесте, есть пользователи вашего сайта или приложения, и вы просто делите их на две группы и смотрите на результат в каждой (например, на конверсию посещений в покупки на сайте). Такой тест называется А/А тестом, и, наверное, вас не удивит, что даже при хорошем разбиении на группы результаты в них будут немного отличаться.

Статистическая значимость эффекта в А/В тесте, грубо говоря, означает, что различие между группами заметно больше, чем было бы в А/А тесте, т.е. «есть реальный эффект», а не случайные отклонения. Что это значит для бизнеса? То, что хотя бы при сохранении тех же условий, что и во время проведения А/В теста, эффект от нововведения с большой вероятностью будет какое-то время сохраняться (важное уточнение: эффект может затухать со временем, никто не отменял «эффект новизны»).

#математика

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/295

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Kantor AI from us


Telegram Kantor.AI
FROM USA