tg-me.com/kantor_ai/357
Last Update:
Вы спросили —Дядя отвечает. Истина находится где-то по середине. Действительно на нашем рынке можно встретить множество решений вокруг открытых моделей с huggingface или же апи модных нынче Midjourney. Это может работать по принципу перевел с ру на ен и вкинул в апиху, далее выдал результат. Обычно, на старте, это было уделом малых команд, стартапов и пр.
На самом деле, ничего в этом зазорного нет, те же ребята с Perplexity строить свое решение начали именно вокруг топовых апи LLM (OpenAI, Google, Anthropic и т.п.). Но при этом perplexity имеют свою доп. логику с поиском, линковкой фактов и пр. Что делает ее решение аналогом поисковика "в кармане". После, они еще и собственные тюны моделей Llama like завезли, благо лицензия открытая позволяет. И это имеет спрос.
Т.е. более крупные игроки, стараются использовать такие решения для холодного старта или во все опираясь на открытые сеты , модели или архитектуры делать собственные решения/тюны/модели. И я думаю, что крупные игроки нашего рынка достигли уже того уровня зрелости, когда могут позволить себе свои исследования, и как следствие, свои решения в виде моделей и сервисов.
Вопрос остается только в источниках данных. Такое поведение, как мы видим на видео, может быть обусловлено, влиянием сетов обучения. Т.к. на рынке множество открытых сетов на английском языке для задач text2image, а для русского языка примеров много меньше. Создание таких ру-ен данных требует затрат на написание/генерацию и чистку. А в открытых сетах для обучения может возникать дисбаланс по ру-ен паре и как следствие превалирование этики из сетов коих больше. Поэтому тот же native/родной после предобучения на таких примерах будет носить знания культуры того языка коего больше. Тк в основном это все переводы с ен языка на ру как есть, да ещё к релевантным для ен языка картинкам. Для того, чтобы решить проблему "перекоса", не достаточно балансировки знаний, надо писать/матчить именно опорные ру тексты с "правильными" картинками к ним,а также придется, скорее всего, прибегнуть к выравниванию поведения — привет alignment/ human feedback и тп. А далее, вооружившись всем этим, нужно будет решать вопросы тюна с эмбеддером text2image, чтобы для языковой пары запрос сводился к "правильной картинке". Именно его представления будут использоваться диффузией как базой генерации. И в тч над этим, думаю, работают исследовательские команды крупных игроков.
Но нет предела совершенству, это непрерывный процесс дообучения и отлова "черных лебедей". Вот как-то так.
BY Kantor.AI
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/kantor_ai/357