Telegram Group & Telegram Channel
Forwarded from Dealer.AI
Вы спросили —Дядя отвечает. Истина находится где-то по середине. Действительно на нашем рынке можно встретить множество решений вокруг открытых моделей с huggingface или же апи модных нынче Midjourney.  Это может работать по принципу перевел с ру на ен и вкинул в апиху, далее выдал результат. Обычно, на старте, это было уделом малых команд, стартапов и пр.

На самом деле, ничего в этом зазорного нет, те же ребята с Perplexity строить свое решение начали именно вокруг топовых апи LLM (OpenAI, Google, Anthropic и т.п.).  Но при этом perplexity имеют свою доп. логику с поиском, линковкой фактов и пр. Что делает ее решение аналогом поисковика "в кармане".  После, они еще и собственные тюны моделей Llama like завезли, благо лицензия открытая позволяет. И это имеет спрос.
Т.е. более крупные игроки, стараются использовать такие решения для холодного старта или во все опираясь на открытые сеты , модели или архитектуры делать собственные решения/тюны/модели. И я думаю, что крупные игроки нашего рынка достигли уже того уровня зрелости, когда могут позволить себе свои исследования, и как следствие, свои решения в виде моделей и сервисов.

Вопрос остается только в источниках данных. Такое поведение, как мы видим на видео, может быть обусловлено, влиянием сетов обучения. Т.к. на рынке множество открытых сетов на английском языке для задач text2image, а для русского языка примеров много меньше. Создание таких ру-ен данных требует затрат на написание/генерацию и чистку. А в открытых сетах для обучения может возникать дисбаланс по ру-ен паре и как следствие превалирование этики из сетов коих больше. Поэтому тот же native/родной после предобучения на таких примерах будет носить знания культуры того языка коего больше. Тк в основном это все переводы с ен языка на ру как есть, да ещё к релевантным для ен языка картинкам. Для того, чтобы решить проблему "перекоса", не достаточно балансировки знаний, надо писать/матчить именно опорные ру тексты с "правильными" картинками к ним,а также придется, скорее всего, прибегнуть к выравниванию поведения — привет alignment/ human feedback и тп. А далее, вооружившись всем этим, нужно будет решать вопросы тюна с эмбеддером text2image, чтобы для языковой пары запрос сводился к "правильной картинке". Именно его представления будут использоваться диффузией как базой генерации. И в тч над этим, думаю, работают исследовательские команды крупных игроков.

Но нет предела совершенству, это непрерывный процесс дообучения и отлова "черных лебедей". Вот как-то так.



tg-me.com/kantor_ai/357
Create:
Last Update:

Вы спросили —Дядя отвечает. Истина находится где-то по середине. Действительно на нашем рынке можно встретить множество решений вокруг открытых моделей с huggingface или же апи модных нынче Midjourney.  Это может работать по принципу перевел с ру на ен и вкинул в апиху, далее выдал результат. Обычно, на старте, это было уделом малых команд, стартапов и пр.

На самом деле, ничего в этом зазорного нет, те же ребята с Perplexity строить свое решение начали именно вокруг топовых апи LLM (OpenAI, Google, Anthropic и т.п.).  Но при этом perplexity имеют свою доп. логику с поиском, линковкой фактов и пр. Что делает ее решение аналогом поисковика "в кармане".  После, они еще и собственные тюны моделей Llama like завезли, благо лицензия открытая позволяет. И это имеет спрос.
Т.е. более крупные игроки, стараются использовать такие решения для холодного старта или во все опираясь на открытые сеты , модели или архитектуры делать собственные решения/тюны/модели. И я думаю, что крупные игроки нашего рынка достигли уже того уровня зрелости, когда могут позволить себе свои исследования, и как следствие, свои решения в виде моделей и сервисов.

Вопрос остается только в источниках данных. Такое поведение, как мы видим на видео, может быть обусловлено, влиянием сетов обучения. Т.к. на рынке множество открытых сетов на английском языке для задач text2image, а для русского языка примеров много меньше. Создание таких ру-ен данных требует затрат на написание/генерацию и чистку. А в открытых сетах для обучения может возникать дисбаланс по ру-ен паре и как следствие превалирование этики из сетов коих больше. Поэтому тот же native/родной после предобучения на таких примерах будет носить знания культуры того языка коего больше. Тк в основном это все переводы с ен языка на ру как есть, да ещё к релевантным для ен языка картинкам. Для того, чтобы решить проблему "перекоса", не достаточно балансировки знаний, надо писать/матчить именно опорные ру тексты с "правильными" картинками к ним,а также придется, скорее всего, прибегнуть к выравниванию поведения — привет alignment/ human feedback и тп. А далее, вооружившись всем этим, нужно будет решать вопросы тюна с эмбеддером text2image, чтобы для языковой пары запрос сводился к "правильной картинке". Именно его представления будут использоваться диффузией как базой генерации. И в тч над этим, думаю, работают исследовательские команды крупных игроков.

Но нет предела совершенству, это непрерывный процесс дообучения и отлова "черных лебедей". Вот как-то так.

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/357

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Kantor AI from us


Telegram Kantor.AI
FROM USA