Telegram Group & Telegram Channel
Визуализация Reasoning цепочек - Эпизод IV

Пора заканчивать reasoning историю. В этот раз будет про локальные модели и с картинками в комментариях.

- Эпизод I
- Эпизод II
- Эпизод III
- Reasoning кирпичик для Stargate
- Эпизод IV (этот)


Шаги 23 - 46: Долго и старательно доводил напильником онтологию. Получается в итоге что-то вроде графа, по которому “ползают” ассистенты. Причем в определенный момент, в зависимости от сложности задачи, мы запускаем несколько выделенных ассистентов в разные стороны.

Шаг 47: Задал тестовый compliance вопрос ChatGPT o1 pro. Он думал 2m47s и провалился в грабли, через которые мы перешагнули на шаге 11. А мой reasoning на базе 4o за 25s пришел к правильному выводу.

Шаг 48: Если отобразить семантические связи в виде графа, а потом подсветить на нем пройденные взаимосвязи, то получается интересная визуализация размышлений.

Шаг 49: 4o - это хорошо, но с ним связана куча рисков. А насколько много работы нужно для запуска всей системы целиком локально? Есть только один способ проверить - перенести и посмотреть, насколько сильно она глупеет.

Шаги 50-53: Про портирование работающих Structured Output / CoT цепочек с 4o на более болтливую Qwen2.5-72B-Instruct с “костыльным” constrained decoding.

Шаг 54: Запустил на паре тестовых запросов. Внезапно, но система доходит до конца там, где o1 pro ломается. Похоже, что тщательно вылизанные логические цепочки обладают бОльшим запасом прочности, чем я ожидал.

Шаг 55: Просадка по качеству заметна на этапе размышлений, если включить визуализацию - система с Qwen под капотом запускает сильно больше ассистентов в тупиковые направления исследований по графу. Но имеет значение, что в итоге тупики отсекаются, а итоговые ответы пока выглядят правильно. Дальше надо будет собирать тестовые таблицы для всех блоков и пристально анализировать различия в логике под микроскопом. Но это уже будет другая история.

Шаг 56: А что, если вместо Qwen2.5-72B взять модель попроще, проанализировать ошибки, укрепить цепочки, а потом запускать на модели помощнее?..

Вот на этом и все. Графы с цепочками размышлений ассистентов на базе ChatGPT 4o vs Qwen2.5-72B-Instruct закину в комментарии.

Ваш, @llm_under_hood 🤗

PS: Где можно прочитать про технологии выстраивания reasoning цепочек на сложных доменах? Я не знаю, сам этому учусь на ходу. Больше всего помогает Domain-Driven Design, работы Кристофера Александра, основы продуктовой разработки, и технологии из организации lean R&D комманд.
37🔥27👍17🤩2😁1



tg-me.com/llm_under_hood/492
Create:
Last Update:

Визуализация Reasoning цепочек - Эпизод IV

Пора заканчивать reasoning историю. В этот раз будет про локальные модели и с картинками в комментариях.

- Эпизод I
- Эпизод II
- Эпизод III
- Reasoning кирпичик для Stargate
- Эпизод IV (этот)


Шаги 23 - 46: Долго и старательно доводил напильником онтологию. Получается в итоге что-то вроде графа, по которому “ползают” ассистенты. Причем в определенный момент, в зависимости от сложности задачи, мы запускаем несколько выделенных ассистентов в разные стороны.

Шаг 47: Задал тестовый compliance вопрос ChatGPT o1 pro. Он думал 2m47s и провалился в грабли, через которые мы перешагнули на шаге 11. А мой reasoning на базе 4o за 25s пришел к правильному выводу.

Шаг 48: Если отобразить семантические связи в виде графа, а потом подсветить на нем пройденные взаимосвязи, то получается интересная визуализация размышлений.

Шаг 49: 4o - это хорошо, но с ним связана куча рисков. А насколько много работы нужно для запуска всей системы целиком локально? Есть только один способ проверить - перенести и посмотреть, насколько сильно она глупеет.

Шаги 50-53: Про портирование работающих Structured Output / CoT цепочек с 4o на более болтливую Qwen2.5-72B-Instruct с “костыльным” constrained decoding.

Шаг 54: Запустил на паре тестовых запросов. Внезапно, но система доходит до конца там, где o1 pro ломается. Похоже, что тщательно вылизанные логические цепочки обладают бОльшим запасом прочности, чем я ожидал.

Шаг 55: Просадка по качеству заметна на этапе размышлений, если включить визуализацию - система с Qwen под капотом запускает сильно больше ассистентов в тупиковые направления исследований по графу. Но имеет значение, что в итоге тупики отсекаются, а итоговые ответы пока выглядят правильно. Дальше надо будет собирать тестовые таблицы для всех блоков и пристально анализировать различия в логике под микроскопом. Но это уже будет другая история.

Шаг 56: А что, если вместо Qwen2.5-72B взять модель попроще, проанализировать ошибки, укрепить цепочки, а потом запускать на модели помощнее?..

Вот на этом и все. Графы с цепочками размышлений ассистентов на базе ChatGPT 4o vs Qwen2.5-72B-Instruct закину в комментарии.

Ваш, @llm_under_hood 🤗

PS: Где можно прочитать про технологии выстраивания reasoning цепочек на сложных доменах? Я не знаю, сам этому учусь на ходу. Больше всего помогает Domain-Driven Design, работы Кристофера Александра, основы продуктовой разработки, и технологии из организации lean R&D комманд.

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/492

View MORE
Open in Telegram


LLM под капотом Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

LLM под капотом from us


Telegram LLM под капотом
FROM USA