Telegram Group & Telegram Channel
​​Uber AI Plug and Play Language Model (PPLM)

PPLM allows a user to flexibly plug in one or more simple attribute models representing the desired control objective into a large, unconditional language modeling (LM). The method has the key property that it uses the LM as is – no training or fine-tuning is required – which enables researchers to leverage best-in-class LMs even if they don't have the extensive hardware required to train them.

PPLM lets users combine small attribute models with an LM to steer its generation. Attribute models can be 100k times smaller than the LM and still be effective in steering it

PPLM algorithm entails three simple steps to generate a sample:
* given a partially generated sentence, compute log(p(x)) and log(p(a|x)) and the gradients of each with respect to the hidden representation of the underlying language model. These quantities are both available using an efficient forward and backward pass of both models;
* use the gradients to move the hidden representation of the language model a small step in the direction of increasing log(p(a|x)) and increasing log(p(x));
* sample the next word

more at paper: https://arxiv.org/abs/1912.02164

blogpost: https://eng.uber.com/pplm/
code: https://github.com/uber-research/PPLM
online demo: https://transformer.huggingface.co/model/pplm
@Machine_learn
#nlp #lm #languagemodeling #uber #pplm



tg-me.com/Machine_learn/1286
Create:
Last Update:

​​Uber AI Plug and Play Language Model (PPLM)

PPLM allows a user to flexibly plug in one or more simple attribute models representing the desired control objective into a large, unconditional language modeling (LM). The method has the key property that it uses the LM as is – no training or fine-tuning is required – which enables researchers to leverage best-in-class LMs even if they don't have the extensive hardware required to train them.

PPLM lets users combine small attribute models with an LM to steer its generation. Attribute models can be 100k times smaller than the LM and still be effective in steering it

PPLM algorithm entails three simple steps to generate a sample:
* given a partially generated sentence, compute log(p(x)) and log(p(a|x)) and the gradients of each with respect to the hidden representation of the underlying language model. These quantities are both available using an efficient forward and backward pass of both models;
* use the gradients to move the hidden representation of the language model a small step in the direction of increasing log(p(a|x)) and increasing log(p(x));
* sample the next word

more at paper: https://arxiv.org/abs/1912.02164

blogpost: https://eng.uber.com/pplm/
code: https://github.com/uber-research/PPLM
online demo: https://transformer.huggingface.co/model/pplm
@Machine_learn
#nlp #lm #languagemodeling #uber #pplm

BY Machine learning books and papers




Share with your friend now:
tg-me.com/Machine_learn/1286

View MORE
Open in Telegram


Machine learning books and papers Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Machine learning books and papers from us


Telegram Machine learning books and papers
FROM USA