Telegram Group & Telegram Channel
Fresh picks from ArXiv
This week on ArXiv: 1000-layer GNN, solutions to OGB challenge, and theory behind GNN explanations 🤔

If I forgot to mention your paper, please shoot me a message and I will update the post.


Deep GNNs
* Training Graph Neural Networks with 1000 Layers ICML 2021
* Very Deep Graph Neural Networks Via Noise Regularisation with Petar Veličković, Peter Battaglia

Heterophily
* Improving Robustness of Graph Neural Networks with Heterophily-Inspired Designs with Danai Koutra

Knowledge graphs
* Query Embedding on Hyper-relational Knowledge Graphs with Mikhail Galkin

OGB-challenge
* Fast Quantum Property Prediction via Deeper 2D and 3D Graph Networks
* First Place Solution of KDD Cup 2021 & OGB Large-Scale Challenge Graph Prediction Track

Theory
* Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations with Marinka Zitnik
* A unifying point of view on expressive power of GNNs

GNNs
* Stability of Graph Convolutional Neural Networks to Stochastic Perturbations with Alejandro Ribeiro
* TD-GEN: Graph Generation With Tree Decomposition
* Unsupervised Resource Allocation with Graph Neural Networks
* Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network
* GemNet: Universal Directional Graph Neural Networks for Molecules with Stephan Günnemann
* Optimizing Graph Transformer Networks with Graph-based Techniques

Survey
* Systematic comparison of graph embedding methods in practical tasks
* Evaluating Modules in Graph Contrastive Learning
* A Survey on Mining and Analysis of Uncertain Graphs

@Machine_learn



tg-me.com/Machine_learn/1719
Create:
Last Update:

Fresh picks from ArXiv
This week on ArXiv: 1000-layer GNN, solutions to OGB challenge, and theory behind GNN explanations 🤔

If I forgot to mention your paper, please shoot me a message and I will update the post.


Deep GNNs
* Training Graph Neural Networks with 1000 Layers ICML 2021
* Very Deep Graph Neural Networks Via Noise Regularisation with Petar Veličković, Peter Battaglia

Heterophily
* Improving Robustness of Graph Neural Networks with Heterophily-Inspired Designs with Danai Koutra

Knowledge graphs
* Query Embedding on Hyper-relational Knowledge Graphs with Mikhail Galkin

OGB-challenge
* Fast Quantum Property Prediction via Deeper 2D and 3D Graph Networks
* First Place Solution of KDD Cup 2021 & OGB Large-Scale Challenge Graph Prediction Track

Theory
* Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations with Marinka Zitnik
* A unifying point of view on expressive power of GNNs

GNNs
* Stability of Graph Convolutional Neural Networks to Stochastic Perturbations with Alejandro Ribeiro
* TD-GEN: Graph Generation With Tree Decomposition
* Unsupervised Resource Allocation with Graph Neural Networks
* Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network
* GemNet: Universal Directional Graph Neural Networks for Molecules with Stephan Günnemann
* Optimizing Graph Transformer Networks with Graph-based Techniques

Survey
* Systematic comparison of graph embedding methods in practical tasks
* Evaluating Modules in Graph Contrastive Learning
* A Survey on Mining and Analysis of Uncertain Graphs

@Machine_learn

BY Machine learning books and papers


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Machine_learn/1719

View MORE
Open in Telegram


Machine learning books and papers Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Machine learning books and papers from us


Telegram Machine learning books and papers
FROM USA