tg-me.com/Machine_learn/2733
Last Update:
نفرات ۱ تا ۴ مقاله ی زیر خالی می باشد از دوستان اگر کسی خواست در خدمتیم
Title
Solar Energy Production Forecasting: A Comparative Study of LSTM, Bi-LSTM, and XGBoost Models with Activation Function Analysis
Abstract
This research focuses on the integration of Machine Learning (ML) methodologies and climatic parameters to predict solar panel energy generation, with a specific emphasis on addressing consumption-production imbalances. Leveraging a dataset sourced from the Kaggle platform, the study is conducted in the context of Estonia, aiming to optimize solar energy utilization in this geographic region. The dataset, obtained from Kaggle, encompasses comprehensive information on climatic variables, including sunlight intensity, temperature, and humidity, alongside corresponding solar panel energy output. Through the utilization of machine learning algorithms, such as XGBoost regression and neural networks, our predictive model endeavors to discern intricate patterns and correlations within these datasets. By tailoring the model to Estonia's climatic nuances, we seek to enhance the accuracy of energy production forecasts and, consequently, better manage the challenges associated with consumption-production imbalances. Furthermore, the research investigates the adaptability of the proposed model to diverse climatic conditions, ensuring its applicability for similar endeavors in other geographical locations. By utilizing Kaggle's rich dataset and employing advanced machine learning techniques, this study aims to contribute valuable insights that can inform sustainable energy policies and practices, ultimately promoting a more efficient and reliable renewable energy infrastructure.
Related Fields
Business, Marketing, Industrial Engineering, Computer Engineering.
Candidate Journals
1. Sustainability (5.8 CiteScore, 3.9 Impact Factor)
2. Archives of Computational Methods in Engineering (14.1 CiteScore, 9.7 Impact Factor)
3. Journal of Building Engineering (8.3 CiteScore, 6.4 Impact Factor)
@Raminmousa
@paper4money
@Machine_learn
BY Machine learning books and papers
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/Machine_learn/2733