tg-me.com/Machine_learn/3304
Last Update:
MiniCPM-V: A GPT-4V Level MLLM on Your Phone
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of #AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient #MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong #OCR capability and 1.8M pixel high-resolution #image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.
Paper: https://arxiv.org/pdf/2408.01800v1.pdf
Codes:
https://github.com/OpenBMB/MiniCPM-o
https://github.com/openbmb/minicpm-v
Datasets: Video-MME
@Machine_learn
BY Machine learning books and papers

Share with your friend now:
tg-me.com/Machine_learn/3304