Telegram Group & Telegram Channel
JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.

Paper: https://arxiv.org/pdf/2411.07975v1.pdf

Code: https://github.com/deepseek-ai/janus

Datasets: GQA MMBench MM-Vet SEED-Bench

@Machine_learn



tg-me.com/Machine_learn/3345
Create:
Last Update:

JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.

Paper: https://arxiv.org/pdf/2411.07975v1.pdf

Code: https://github.com/deepseek-ai/janus

Datasets: GQA MMBench MM-Vet SEED-Bench

@Machine_learn

BY Machine learning books and papers




Share with your friend now:
tg-me.com/Machine_learn/3345

View MORE
Open in Telegram


Machine learning books and papers Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Machine learning books and papers from us


Telegram Machine learning books and papers
FROM USA