Telegram Group & Telegram Channel
Forwarded from Papers
با عرض سلام برای یکی از مقالاتمون نفر دوم رو لازم داریم زمان سابمیت امشب تا فردا شب

Time-series Forecasting of Bitcoin Prices and Illiquidity
using High-dimensional Features: XGBoostLSTM
Approach


Corresponding author: Ramin Mousa

Abstract Liquidity is the ease of converting an asset into cash or another asset
without loss, and is shown by the relationship between the time scale and the
price scale of an investment. This article examines the relationship between
Bitcoin’s price prediction and illiquidity. Bitcoin Hash Rate information was col-
lected in three different intervals, and three techniques of feature selection (FS)
Filter, Wrapper, and Embedded were used. Considering the regression nature of
illiquidity prediction, an approach based on LSTM network and XGBoost was
proposed. LSTM was used to extract time series features, and XGBoost was used
to learn these features. The proposed LSTMXGBoost approach was evaluated in
two modes: price prediction and illiquidity prediction. This approach achieved
MAE 1.60 in the next-day forecast and MAE 3.46 in the next-day illiquidity
forecast. In the cross-validation of the proposed approach on the FS approaches,
the best result was obtained in the prediction by the filter approach and in
the classification by the wrapper approach. These obtained results indicate that
the presented models outperform the existing models in the literature. Examin-
ing the confusion matrices indicates that the two tasks of price prediction and
illiquidity prediction have no correlation and harm each other.

Keywords: illiquidity prediction, Bitcoin hash rate, hybrid model, price pre-
diction, LSTMXGBoost
ژورنال سابمیت
Journal : Finanace innovation(springer)
If: 6.5
دوستانی که در سری زمانی کار می کنن می تونن در این مقاله شرکت کنن.

@Raminmousa



tg-me.com/Machine_learn/3395
Create:
Last Update:

با عرض سلام برای یکی از مقالاتمون نفر دوم رو لازم داریم زمان سابمیت امشب تا فردا شب

Time-series Forecasting of Bitcoin Prices and Illiquidity
using High-dimensional Features: XGBoostLSTM
Approach


Corresponding author: Ramin Mousa

Abstract Liquidity is the ease of converting an asset into cash or another asset
without loss, and is shown by the relationship between the time scale and the
price scale of an investment. This article examines the relationship between
Bitcoin’s price prediction and illiquidity. Bitcoin Hash Rate information was col-
lected in three different intervals, and three techniques of feature selection (FS)
Filter, Wrapper, and Embedded were used. Considering the regression nature of
illiquidity prediction, an approach based on LSTM network and XGBoost was
proposed. LSTM was used to extract time series features, and XGBoost was used
to learn these features. The proposed LSTMXGBoost approach was evaluated in
two modes: price prediction and illiquidity prediction. This approach achieved
MAE 1.60 in the next-day forecast and MAE 3.46 in the next-day illiquidity
forecast. In the cross-validation of the proposed approach on the FS approaches,
the best result was obtained in the prediction by the filter approach and in
the classification by the wrapper approach. These obtained results indicate that
the presented models outperform the existing models in the literature. Examin-
ing the confusion matrices indicates that the two tasks of price prediction and
illiquidity prediction have no correlation and harm each other.

Keywords: illiquidity prediction, Bitcoin hash rate, hybrid model, price pre-
diction, LSTMXGBoost
ژورنال سابمیت
Journal : Finanace innovation(springer)
If: 6.5
دوستانی که در سری زمانی کار می کنن می تونن در این مقاله شرکت کنن.

@Raminmousa

BY Machine learning books and papers


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Machine_learn/3395

View MORE
Open in Telegram


Machine learning books and papers Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Machine learning books and papers from us


Telegram Machine learning books and papers
FROM USA