Telegram Group & Telegram Channel
⭕️ بیسیم فوق نوری ذرات کوانتومی: از کل کل علمی اینشتین تا نوبل ۲۰۲۲

در نظریۀ کوانتوم، حالت کوانتومی (یا تابع موج) موجودی فراتر از ذرات است. تابع موجِ یک ذره میتواند در فضا پخش شده، به دو یا چند قسمت مجزا تقسیم شود و با خودش برهمنهی و تداخل کند. در نهایت نیز توصیف آمار ذرات و رفتارشان از طریق حالت کوانتومی آنها پیشبینی میشود. گویی علاوه بر ذرات، موجودی دیگر نیز وجود دارد که منشأ تمام عجایبی است که در دنیای کوانتومی مشاهده میکنیم.

یکی دیگر از عجایبی که تابع موج کوانتومی پدید می آورد زمانی است که میخواهیم دو یا چند ذره را بوسیلۀ حالت کوانتومی آنها توصیف کنیم. در این صورت دیگر نمیتوان به سیستم چند ذره ای به عنوان مجموعه ای از ذرات مستقل نگاه کرد و سیستم را به اجزای آن تقلیل داد. گویی تمام ذرات بوسیلۀ یک بیسیم نامرئی و فوق نوری با یکدیگر در ارتباطند. این ویژگی مجالی بود برای اینشتین تا بتواند ناخرسندی خود از نظریۀ نیلز بور را در قالب بیان محکم ریاضی به ظهور برساند. پارادوکس EPR نامی است که بر این تناقض مطرح شده توسط اینشتین گذاشته شده است. قبلا در این متن و این ویدیو به این مسئله پرداختیم.

خلاصه اینکه اینشتین نشان داد اگر قواعد کوانتوم از جمله توصیف ذرات با تابع موج و اصل عدم قطعیت را بپذیریم، در اینصورت یا نظریه کوانتوم ناقص است و یا ذرات بایکدیگر ارتباطی فوق نوری دارند. در آن زمان محدودیت سرعت نور در انتقال اطلاعات به عنوان پیش فرضی محکم در فیزیک پذیرفته شده بود، درنتیجه لاجرم کامل بودن توصیف کوانتوم زیر سوال میرفت. البته بور در آن زمان ترجیح داد واقعیت جهان را زیر سوال ببرد تا اینکه قبول کند نظریه اش کامل نیست!

تا حدود ۳۰ سال این مسئله مبهم بود تا اینکه جان بل در ۱۹۶۴ در مجله ای نه چندان مطرح مقاله ای را منتشر کرد و در آن معیاری آزمایشگاهی برای تشخیص ارتباط فوق نوری میان ذرات ارائه کرد. او یک نامساوی را معرفی کرد که اگر در آزمایش نقض میشد به این معنا بود که ذرات درهمتنیده (که با یک تابع موج کلی توصیف میشوند) بصورت فوق نوری بایکدیگر در ارتباطند و از شرایط آزمایش یکدیگر در فاصلۀ بسیار دور باخبرند. مقالۀ بل در ۱۹۶۷ نظر جان کلاوسر را به خود جلب کرد. کلاوسر در ۱۹۷۲ آزمایشی را ترتیب داد تا بتواند نامساوی بل را آزمایش کند. آزمایش او در شرایط محدودی بود چرا که برای نشان دادن فوق نوری بودن ارتباط ذرات، باید تنظیم آشکارساز بعد از جدا شدن ذرات درهمتنیده از یکدیگر و درست قبل از اینکه به آشکارساز برسند مشخص شود. (تا احتمال انتقال اطلاعاتِ تنظیمات آشکارسازها قبل از رسیدن ذرات وجود نداشته باشد).

آلن اسپه در ۱۹۸۲ آزمایشی انجام داد که این روزنۀ آزمایشگاهی را نداشت. اما همچنان روزنه هایی در آزمایش او مطرح بود. پس از آن این نوع آزمایشات به یک ترند علمی تبدیل شد و افرادی چون آنتوان زایلینگر کارهای نظری و آزمایشگاهی زیادی در جهت رفع روزنه های آزمایشگاهی انجام دادند. امسال سالی بود که نوبل به این سه نفر بجهت تلاش هایشان در این حوزه اعطا شد. اکنون نیز پایۀ بسیاری از فناوری های کوانتومی از جمله رمزنگاری بر این پدیده استوار شده است.

با وجود تمام تلاش ها و فهم بسیار عمیق تر ما از پدیدۀ درهمتنیدگی، همچنان مسائل و ابهامات بسیاری در این حوزه وجود دارد. یکی از سوالات جدی این است که چطور ذرات درهمتنیده میتوانند بصورت فوق نوری با یکدیگر در ارتباط باشند اما ما نمیتوانیم از این پدیده برای انتقال اطلاعات با سرعت بیشتر از نور استفاده نماییم. با وجود اینکه قضیه ای دربارۀ عدم امکان ارسال سیگنال فوق نوری اثبات شده است اما اثبات این قضیه نیز دارای رخنه هایی است که مسئله را باز گذاشته است. یکی از زمینه هایی که بسیار جذاب و بنیادی است بررسی اثر درهمتنیدگی بر طرح تداخل دوذره ای ذرات درهمتنیده است. این موضوع نیازمند آگاهی از توزیع زمان رسیدن ذرات است که در چارچوب کوانتوم استاندارد امکان آن وجود ندارند. (علت آن را در اینجا بررسی کرده ایم).

اخیرا مقاله ای توسط آقایان دکتر کاظمی و دکتر حسین زاده منتشر شده است که بوسیلۀ کوانتوم بوهمی پیشبینی آزمایشگاهی جدیدی برای طرح ذرات درهمتنیده ارائه کرده اند. در مقالۀ ایشان که در آستانۀ چاپ در مجلۀ PRA است، آزمایش جفت دو شکاف مورد بررسی قرار گرفته و از طریق محاسبۀ مسیر ذرات و زمان کلپس، طرح تداخل دو ذره ای پیش بینی شده است. همانطور که در تصویر زیر مشاهده مینمایید، اگر اثر درهمتنیدگی ذرات را درنظر نگیریم ذرات مسیرهای سبز را طی میکنند. با وارد کردن اثر کلپس به محض رسیدن ذرات سمت چپ به پردۀ آشکارساز، تابع موج آنها تقلیل یافته و باعث تغییر مسیر ذرات راست میشود (مسیرهای مشکی). در این توصیف از نظریۀ کوانتوم ارتباط فوق نوری ذرات مشهود تر است.

📄لینک مقاله:
https://arxiv.org/pdf/2208.01325.pdf

🆔 @QMproblems



tg-me.com/QMproblems/213
Create:
Last Update:

⭕️ بیسیم فوق نوری ذرات کوانتومی: از کل کل علمی اینشتین تا نوبل ۲۰۲۲

در نظریۀ کوانتوم، حالت کوانتومی (یا تابع موج) موجودی فراتر از ذرات است. تابع موجِ یک ذره میتواند در فضا پخش شده، به دو یا چند قسمت مجزا تقسیم شود و با خودش برهمنهی و تداخل کند. در نهایت نیز توصیف آمار ذرات و رفتارشان از طریق حالت کوانتومی آنها پیشبینی میشود. گویی علاوه بر ذرات، موجودی دیگر نیز وجود دارد که منشأ تمام عجایبی است که در دنیای کوانتومی مشاهده میکنیم.

یکی دیگر از عجایبی که تابع موج کوانتومی پدید می آورد زمانی است که میخواهیم دو یا چند ذره را بوسیلۀ حالت کوانتومی آنها توصیف کنیم. در این صورت دیگر نمیتوان به سیستم چند ذره ای به عنوان مجموعه ای از ذرات مستقل نگاه کرد و سیستم را به اجزای آن تقلیل داد. گویی تمام ذرات بوسیلۀ یک بیسیم نامرئی و فوق نوری با یکدیگر در ارتباطند. این ویژگی مجالی بود برای اینشتین تا بتواند ناخرسندی خود از نظریۀ نیلز بور را در قالب بیان محکم ریاضی به ظهور برساند. پارادوکس EPR نامی است که بر این تناقض مطرح شده توسط اینشتین گذاشته شده است. قبلا در این متن و این ویدیو به این مسئله پرداختیم.

خلاصه اینکه اینشتین نشان داد اگر قواعد کوانتوم از جمله توصیف ذرات با تابع موج و اصل عدم قطعیت را بپذیریم، در اینصورت یا نظریه کوانتوم ناقص است و یا ذرات بایکدیگر ارتباطی فوق نوری دارند. در آن زمان محدودیت سرعت نور در انتقال اطلاعات به عنوان پیش فرضی محکم در فیزیک پذیرفته شده بود، درنتیجه لاجرم کامل بودن توصیف کوانتوم زیر سوال میرفت. البته بور در آن زمان ترجیح داد واقعیت جهان را زیر سوال ببرد تا اینکه قبول کند نظریه اش کامل نیست!

تا حدود ۳۰ سال این مسئله مبهم بود تا اینکه جان بل در ۱۹۶۴ در مجله ای نه چندان مطرح مقاله ای را منتشر کرد و در آن معیاری آزمایشگاهی برای تشخیص ارتباط فوق نوری میان ذرات ارائه کرد. او یک نامساوی را معرفی کرد که اگر در آزمایش نقض میشد به این معنا بود که ذرات درهمتنیده (که با یک تابع موج کلی توصیف میشوند) بصورت فوق نوری بایکدیگر در ارتباطند و از شرایط آزمایش یکدیگر در فاصلۀ بسیار دور باخبرند. مقالۀ بل در ۱۹۶۷ نظر جان کلاوسر را به خود جلب کرد. کلاوسر در ۱۹۷۲ آزمایشی را ترتیب داد تا بتواند نامساوی بل را آزمایش کند. آزمایش او در شرایط محدودی بود چرا که برای نشان دادن فوق نوری بودن ارتباط ذرات، باید تنظیم آشکارساز بعد از جدا شدن ذرات درهمتنیده از یکدیگر و درست قبل از اینکه به آشکارساز برسند مشخص شود. (تا احتمال انتقال اطلاعاتِ تنظیمات آشکارسازها قبل از رسیدن ذرات وجود نداشته باشد).

آلن اسپه در ۱۹۸۲ آزمایشی انجام داد که این روزنۀ آزمایشگاهی را نداشت. اما همچنان روزنه هایی در آزمایش او مطرح بود. پس از آن این نوع آزمایشات به یک ترند علمی تبدیل شد و افرادی چون آنتوان زایلینگر کارهای نظری و آزمایشگاهی زیادی در جهت رفع روزنه های آزمایشگاهی انجام دادند. امسال سالی بود که نوبل به این سه نفر بجهت تلاش هایشان در این حوزه اعطا شد. اکنون نیز پایۀ بسیاری از فناوری های کوانتومی از جمله رمزنگاری بر این پدیده استوار شده است.

با وجود تمام تلاش ها و فهم بسیار عمیق تر ما از پدیدۀ درهمتنیدگی، همچنان مسائل و ابهامات بسیاری در این حوزه وجود دارد. یکی از سوالات جدی این است که چطور ذرات درهمتنیده میتوانند بصورت فوق نوری با یکدیگر در ارتباط باشند اما ما نمیتوانیم از این پدیده برای انتقال اطلاعات با سرعت بیشتر از نور استفاده نماییم. با وجود اینکه قضیه ای دربارۀ عدم امکان ارسال سیگنال فوق نوری اثبات شده است اما اثبات این قضیه نیز دارای رخنه هایی است که مسئله را باز گذاشته است. یکی از زمینه هایی که بسیار جذاب و بنیادی است بررسی اثر درهمتنیدگی بر طرح تداخل دوذره ای ذرات درهمتنیده است. این موضوع نیازمند آگاهی از توزیع زمان رسیدن ذرات است که در چارچوب کوانتوم استاندارد امکان آن وجود ندارند. (علت آن را در اینجا بررسی کرده ایم).

اخیرا مقاله ای توسط آقایان دکتر کاظمی و دکتر حسین زاده منتشر شده است که بوسیلۀ کوانتوم بوهمی پیشبینی آزمایشگاهی جدیدی برای طرح ذرات درهمتنیده ارائه کرده اند. در مقالۀ ایشان که در آستانۀ چاپ در مجلۀ PRA است، آزمایش جفت دو شکاف مورد بررسی قرار گرفته و از طریق محاسبۀ مسیر ذرات و زمان کلپس، طرح تداخل دو ذره ای پیش بینی شده است. همانطور که در تصویر زیر مشاهده مینمایید، اگر اثر درهمتنیدگی ذرات را درنظر نگیریم ذرات مسیرهای سبز را طی میکنند. با وارد کردن اثر کلپس به محض رسیدن ذرات سمت چپ به پردۀ آشکارساز، تابع موج آنها تقلیل یافته و باعث تغییر مسیر ذرات راست میشود (مسیرهای مشکی). در این توصیف از نظریۀ کوانتوم ارتباط فوق نوری ذرات مشهود تر است.

📄لینک مقاله:
https://arxiv.org/pdf/2208.01325.pdf

🆔 @QMproblems

BY Quantum problems




Share with your friend now:
tg-me.com/QMproblems/213

View MORE
Open in Telegram


Quantum problems Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Quantum problems from us


Telegram Quantum problems
FROM USA