Нобелевки, где помог Python
Python играет ключевую роль в науке. Это инструмент анализа данных, моделирования и визуализации. Вашему вниманию самые нашумевшие проекты с участием этого ЯП, получившие Нобелевские премии.
Обратное распространение ошибки (Backpropagation) и глубокое обучение
Наука: Физика
Когда: 2024
Библиотеки TensorFlow и PyTorch стали основными инструментами для реализации алгоритма обратного распространения ошибки в нейронных сетях.
CRISPR/Cas9 — редактирование генома
Наука: химия
Когда: 2020
Библиотека Biopython используется для анализа геномных данных и моделирования последовательностей ДНК.
Гравитационные волны (LIGO)
Наука: физика
Когда: 2017
Библиотека GWpy используется для анализа данных, полученных от детекторов гравитационных волн — это рябь в пространстве-времени, возникающая при очень мощных космических событиях, например, столкновении черных дыр.
Нейропластичность и функциональная МРТ
Наука: физиология
Когда: 2014
Библиотека MNE-Python используется для анализа нейрофизиологических данных, таких как ЭЭГ и МЭГ.
Анализ климата и моделирование глобального потепления
Наука: физика
Когда: 2021
Библиотека Xarray помогает анализировать многомерные климатические данные и моделировать климатические изменения.
Экзопланеты — открытие планет за пределами Солнечной системы
Наука: физика
Когда: 2019
Библиотека Lightkurve используется для анализа световых кривых звезд и обнаружения экзопланет.
Некоторые проекты все же остались лишь номинантами, но их тоже стоит упомянуть, ибо лучшего способа зарядиться изучать программирование, пожалуй, нет.
Телескоп Джеймса Уэбба (JWST) и инфракрасная астрономия
Инструменты Astropy используется для обработки и анализа данных, полученных от JWST. Это помогает определить химический состав объектов, проследить их траектории во времени.
Подробнее
#факт
@zen_of_python
Python играет ключевую роль в науке. Это инструмент анализа данных, моделирования и визуализации. Вашему вниманию самые нашумевшие проекты с участием этого ЯП, получившие Нобелевские премии.
Обратное распространение ошибки (Backpropagation) и глубокое обучение
Наука: Физика
Когда: 2024
Библиотеки TensorFlow и PyTorch стали основными инструментами для реализации алгоритма обратного распространения ошибки в нейронных сетях.
CRISPR/Cas9 — редактирование генома
Наука: химия
Когда: 2020
Библиотека Biopython используется для анализа геномных данных и моделирования последовательностей ДНК.
Гравитационные волны (LIGO)
Наука: физика
Когда: 2017
Библиотека GWpy используется для анализа данных, полученных от детекторов гравитационных волн — это рябь в пространстве-времени, возникающая при очень мощных космических событиях, например, столкновении черных дыр.
Нейропластичность и функциональная МРТ
Наука: физиология
Когда: 2014
Библиотека MNE-Python используется для анализа нейрофизиологических данных, таких как ЭЭГ и МЭГ.
Анализ климата и моделирование глобального потепления
Наука: физика
Когда: 2021
Библиотека Xarray помогает анализировать многомерные климатические данные и моделировать климатические изменения.
Экзопланеты — открытие планет за пределами Солнечной системы
Наука: физика
Когда: 2019
Библиотека Lightkurve используется для анализа световых кривых звезд и обнаружения экзопланет.
Некоторые проекты все же остались лишь номинантами, но их тоже стоит упомянуть, ибо лучшего способа зарядиться изучать программирование, пожалуй, нет.
Телескоп Джеймса Уэбба (JWST) и инфракрасная астрономия
Инструменты Astropy используется для обработки и анализа данных, полученных от JWST. Это помогает определить химический состав объектов, проследить их траектории во времени.
Подробнее
#факт
@zen_of_python
Analytics Vidhya
The 2024 Nobel Prizes: AI is Taking Over Everything
Find out how AI is reshaping the future of science with the Nobel Prizes in Physics and Chemistry. Nobel prize winners and their work in 2024.
Как работает развёртывание Python-приложений: от запроса до ответа
Зачем нужен gunicorn? А зачем — Nginx? Эти вопросы часто задают разработчики, впервые сталкивающиеся с деплоем Python-приложений. Может показаться, что веб-приложение — это просто код на Flask или Django, который запускается и принимает запросы. Но на практике между пользователем и вашим кодом выстраивается целая цепочка инфраструктурных компонентов, каждый из которых решает важную задачу. На схеме показан путь HTTP-запроса от клиента до конечного обработчика в приложении и обратно.
Accept: принимаем запрос
Когда пользователь открывает ваш сайт, он отправляет HTTP-запрос. Этот запрос в первую очередь встречается с внешним сервером — чаще всего это nginx. Его задача — понять, куда направить запрос: отдать ли статику, переписать URL, направить на конкретное приложение, или вовсе отклонить (например, по причине отсутствия авторизации). Он также может выполнять кэширование, сжатие и защищать от некоторых видов атак. Сюда же можно отнести балансировщики нагрузки и ingress-контроллеры в Kubernetes.
Translate: превращаем байты в Python
Следующий этап — перевод сетевого запроса в то, что понимает ваше Python-приложение. Это задача gunicorn или аналогичных серверов, поддерживающих WSGI (или ASGI, если речь о FastAPI и асинхронных приложениях). gunicorn создаёт рабочие процессы, слушает сокет, принимает соединения от nginx и передаёт их дальше в код Python. Он изолирует логику приложения от низкоуровневой сетевой части и обеспечивает масштабируемость.
Process: бизнес-логика и генерация ответа
Завершающий этап — сам Python-код во фреймворке (Django, Flask, FastAPI и пр.). Здесь выполняются проверки, обращения к БД, формируются HTML-страницы или JSON-ответы. Именно здесь происходит «магия» — добавление ценности, решение задач пользователей и реализация бизнес-логики.
#факт #основы
@zen_of_python
👀 — Если пришлось перечитать три раза
Зачем нужен gunicorn? А зачем — Nginx? Эти вопросы часто задают разработчики, впервые сталкивающиеся с деплоем Python-приложений. Может показаться, что веб-приложение — это просто код на Flask или Django, который запускается и принимает запросы. Но на практике между пользователем и вашим кодом выстраивается целая цепочка инфраструктурных компонентов, каждый из которых решает важную задачу. На схеме показан путь HTTP-запроса от клиента до конечного обработчика в приложении и обратно.
Accept: принимаем запрос
Когда пользователь открывает ваш сайт, он отправляет HTTP-запрос. Этот запрос в первую очередь встречается с внешним сервером — чаще всего это nginx. Его задача — понять, куда направить запрос: отдать ли статику, переписать URL, направить на конкретное приложение, или вовсе отклонить (например, по причине отсутствия авторизации). Он также может выполнять кэширование, сжатие и защищать от некоторых видов атак. Сюда же можно отнести балансировщики нагрузки и ingress-контроллеры в Kubernetes.
Translate: превращаем байты в Python
Следующий этап — перевод сетевого запроса в то, что понимает ваше Python-приложение. Это задача gunicorn или аналогичных серверов, поддерживающих WSGI (или ASGI, если речь о FastAPI и асинхронных приложениях). gunicorn создаёт рабочие процессы, слушает сокет, принимает соединения от nginx и передаёт их дальше в код Python. Он изолирует логику приложения от низкоуровневой сетевой части и обеспечивает масштабируемость.
Process: бизнес-логика и генерация ответа
Завершающий этап — сам Python-код во фреймворке (Django, Flask, FastAPI и пр.). Здесь выполняются проверки, обращения к БД, формируются HTML-страницы или JSON-ответы. Именно здесь происходит «магия» — добавление ценности, решение задач пользователей и реализация бизнес-логики.
#факт #основы
@zen_of_python
👀 — Если пришлось перечитать три раза
Forwarded from Веб-страница
Мегагайд: культура работы с Git
Git — это не только (и не столько!) знание самой технологии и конкретных команд, но и определённая культура взаимодействия, практики, подходы, договорённости. Всё это помогает участникам команды лучше понимать друг друга и работать быстрее и чётче.
В статье — как раз об этом. В ней раскрыли, что формирует культуру работы с Git: от конвенций именования коммитов и до практик работы в пуллреквесте. В конце статьи — полезные ссылки на интерактивные обучалки, шпаргалки и гайды: https://habr.com/ru/companies/yandex_praktikum/articles/812139/
#git #шпаргалки
Git — это не только (и не столько!) знание самой технологии и конкретных команд, но и определённая культура взаимодействия, практики, подходы, договорённости. Всё это помогает участникам команды лучше понимать друг друга и работать быстрее и чётче.
В статье — как раз об этом. В ней раскрыли, что формирует культуру работы с Git: от конвенций именования коммитов и до практик работы в пуллреквесте. В конце статьи — полезные ссылки на интерактивные обучалки, шпаргалки и гайды: https://habr.com/ru/companies/yandex_praktikum/articles/812139/
#git #шпаргалки
Сломал ногу — выучил Python: как ИИ помог экс-консультанту стать программистом за 100 дней
38-летний Эрик Леннрот после травмы решил изменить карьеру и выбрал Python, пройдя бесплатные курсы CS50 от Гарварда. С помощью ChatGPT он писал псевдокод, получал обратную связь и вручную набирал код. Его первый проект стал основой для более сложного веб-приложения из 25К строк кода. И о чудо! через три месяца он получил оффер в консалтинговой компании в Лондоне, где заменил Excel на автоматизированные пайплайны. Обучение обошлось ему в $120 (подписки на Claude Pro и Cursor).
#факт
@zen_of_python
38-летний Эрик Леннрот после травмы решил изменить карьеру и выбрал Python, пройдя бесплатные курсы CS50 от Гарварда. С помощью ChatGPT он писал псевдокод, получал обратную связь и вручную набирал код. Его первый проект стал основой для более сложного веб-приложения из 25К строк кода. И о чудо! через три месяца он получил оффер в консалтинговой компании в Лондоне, где заменил Excel на автоматизированные пайплайны. Обучение обошлось ему в $120 (подписки на Claude Pro и Cursor).
#факт
@zen_of_python
Насколько вы толерантны к галлюцинациям LLM по шкале от 0 до 5?
Anonymous Poll
26%
0
14%
1
13%
2
24%
3
12%
4
11%
5
Вопросы подписчиков
Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:
— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте;
#вопросы_новичков
@zen_of_python
Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:
— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте;
#вопросы_новичков
@zen_of_python
Бэкроним — это в шутку неверная расшифровка аббревиатуры.
PEP — Please Explain Python
#кек
@zen_of_python
PEP — Please Explain Python
#кек
@zen_of_python
FlareSolverr | Обходим турникет Cloudflare
Фактически эта библиотека обеспечивает вас прокси-сервером для обхода антибот-защиты. Когда приходит запрос, она использует Selenium с undetected-chromedriver для открытия вкладки Chrome. URL с параметрами пользователя открывается, задача Cloudflare решается (или истекает время ожидания). Посмотрим, сколько времени у CF уйдет на «компенсацию» такого «эксплойта».
Цена: бесплатно
Репозиторий проекта
#инструмент
@zen_of_python
Фактически эта библиотека обеспечивает вас прокси-сервером для обхода антибот-защиты. Когда приходит запрос, она использует Selenium с undetected-chromedriver для открытия вкладки Chrome. URL с параметрами пользователя открывается, задача Cloudflare решается (или истекает время ожидания). Посмотрим, сколько времени у CF уйдет на «компенсацию» такого «эксплойта».
Цена: бесплатно
Репозиторий проекта
#инструмент
@zen_of_python
Краткий гайд про хэши для новичков
Хеширование — это фундаментальная концепция в Computer Science. В основе лежит идея односторонней функции, которая принимает на вход данные произвольного размера и возвращает выход фиксированной длины. Эта функция преобразует любые данные — будь то строка, число или файл — в уникальное значение фиксированной длины, называемое хешем. Это значение представляет собой последовательность битов, которая служит своего рода «отпечатком пальца» для исходных данных:
Зачем это нужно
— Проверка «девственности» передаваемых данных: при передаче данных по сети важно убедиться, что они не были изменены. Хеширование позволяет создать контрольную сумму, которая может быть использована для проверки целостности данных;
— Хранение паролей: вместо хранения паролей в открытом виде их точно стоит обезопасить хешами;
— Хеширование используется для создания цифровых подписей, которые подтверждают подлинность и целостность сообщений или документов.
Многие из вас сталкивались с SSH-ключами для Git-репозиториев, причем с разными алгоритмами: MD5, SHA256. В отдельном посте поговорим об алгоритмах шифрования вроде RSA.
Когда мы создаем пару ключей (приватный + публичный), например с помощью:
То получаем приватный ключ, что хранится на локальной машине и используется для аутентификации. Также мы получаем публичный ключ и загружаем его на GitHub. Он не использует хеши для хранения или проверки самих публичных ключей, они проверяются напрямую, при помощи криптографических протоколов. Но вот где вступает в дело хеш:
GitHub (и SSH-клиенты в целом) используют хеши не для безопасности, а для удобной идентификации.
Когда мы смотрим отпечаток ключа, например:
То получаем:
Это и есть отпечаток ключа (fingerprint) — хеш публичного ключа. Он используется для подтверждения подлинности ключа.
#основы
@zen_of_python
Хеширование — это фундаментальная концепция в Computer Science. В основе лежит идея односторонней функции, которая принимает на вход данные произвольного размера и возвращает выход фиксированной длины. Эта функция преобразует любые данные — будь то строка, число или файл — в уникальное значение фиксированной длины, называемое хешем. Это значение представляет собой последовательность битов, которая служит своего рода «отпечатком пальца» для исходных данных:
import hashlib
hash = hashlib.sha256()
hash.update(b'hello')
hashed_string = hash.hexdigest()
print(hashed_string) # 2cf24d......8b9824
Зачем это нужно
— Проверка «девственности» передаваемых данных: при передаче данных по сети важно убедиться, что они не были изменены. Хеширование позволяет создать контрольную сумму, которая может быть использована для проверки целостности данных;
— Хранение паролей: вместо хранения паролей в открытом виде их точно стоит обезопасить хешами;
— Хеширование используется для создания цифровых подписей, которые подтверждают подлинность и целостность сообщений или документов.
Многие из вас сталкивались с SSH-ключами для Git-репозиториев, причем с разными алгоритмами: MD5, SHA256. В отдельном посте поговорим об алгоритмах шифрования вроде RSA.
Когда мы создаем пару ключей (приватный + публичный), например с помощью:
ssh-keygen -t rsa -b 4096
То получаем приватный ключ, что хранится на локальной машине и используется для аутентификации. Также мы получаем публичный ключ и загружаем его на GitHub. Он не использует хеши для хранения или проверки самих публичных ключей, они проверяются напрямую, при помощи криптографических протоколов. Но вот где вступает в дело хеш:
GitHub (и SSH-клиенты в целом) используют хеши не для безопасности, а для удобной идентификации.
Когда мы смотрим отпечаток ключа, например:
ssh-keygen -lf ~/.ssh/id_rsa.pub
То получаем:
2048 SHA256:2f3b7A5Nk...xyz username@host (RSA)
Это и есть отпечаток ключа (fingerprint) — хеш публичного ключа. Он используется для подтверждения подлинности ключа.
#основы
@zen_of_python
Telegram
Zen of Python
Полный Дзен Пайтона в одном канале
Разместить рекламу: @tproger_sales_bot
Правила общения: https://tprg.ru/rules
Другие каналы: @tproger_channels
Сайт: https://tprg.ru/site
Регистрация в перечне РКН: https://tprg.ru/xZOL
Разместить рекламу: @tproger_sales_bot
Правила общения: https://tprg.ru/rules
Другие каналы: @tproger_channels
Сайт: https://tprg.ru/site
Регистрация в перечне РКН: https://tprg.ru/xZOL
Forwarded from Типичный программист
Лаконичная шпора из 12 базовых команд GIT на русском 🙂
Кратко, по делу, без лишнего — самые нужные команды для повседневной работы с репозиторием.
А если нужна более расширенная подборка — загляните в наш прошлый чит-лист. Возможно даже откроете для себя что-то новое
Кратко, по делу, без лишнего — самые нужные команды для повседневной работы с репозиторием.
А если нужна более расширенная подборка — загляните в наш прошлый чит-лист. Возможно даже откроете для себя что-то новое
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Код найма
Хватит искать работу в одиночку!
Ты крутой айтишник, но поиск работы превращается в квест: бесконечные резюме, где важны не навыки, а кейворды, десятки собеседований и постоянный стресс. Знакомо? Всё это выматывает и демотивирует. Мы тебя понимаем — и готовы поддержать!
Команда Tproger открывает первое реалити-шоу в Телеграм о поиске работы — «Код найма».
Вместе с опытными менторами ты пройдешь все этапы найма:
➡️ Прокачаешь резюме так, чтобы его заметили
➡️ Научишься проходить собеседования без волнения
➡️ Получишь честную обратную связь от рекрутеров
➡️ И, главное, дойдёшь до оффера в компании мечты!
Весь путь будет проходить на глазах у подписчиков канала — они тоже смогут давать советы и поддерживать тебя.
Хочешь стать героем нашего реалити и получить шанс найти работу мечты?
✍️ Заполняй анкету
Мы выберем трёх участников, которым поможем пройти весь путь до оффера.
Присоединяйся к «Коду найма» — и пусть твой следующий оффер станет началом новой жизни!
Ты крутой айтишник, но поиск работы превращается в квест: бесконечные резюме, где важны не навыки, а кейворды, десятки собеседований и постоянный стресс. Знакомо? Всё это выматывает и демотивирует. Мы тебя понимаем — и готовы поддержать!
Команда Tproger открывает первое реалити-шоу в Телеграм о поиске работы — «Код найма».
Вместе с опытными менторами ты пройдешь все этапы найма:
Весь путь будет проходить на глазах у подписчиков канала — они тоже смогут давать советы и поддерживать тебя.
Хочешь стать героем нашего реалити и получить шанс найти работу мечты?
✍️ Заполняй анкету
Мы выберем трёх участников, которым поможем пройти весь путь до оффера.
Присоединяйся к «Коду найма» — и пусть твой следующий оффер станет началом новой жизни!
Please open Telegram to view this post
VIEW IN TELEGRAM
Опрос про роль ИИ в вашей работе
Редакция Tproger проводит регулярное исследование об отношении айтишников к Искусственному интеллекту. Это небольшая анкета займет не более 5 минут, но очень поможет прояснить отношение разных групп к AI. Результатами обязательно поделимся.
#опрос
@zen_of_python
Редакция Tproger проводит регулярное исследование об отношении айтишников к Искусственному интеллекту. Это небольшая анкета займет не более 5 минут, но очень поможет прояснить отношение разных групп к AI. Результатами обязательно поделимся.
#опрос
@zen_of_python