Telegram Group & Telegram Channel
🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/6737
Create:
Last Update:

🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2

BY Machinelearning





Share with your friend now:
tg-me.com/ai_machinelearning_big_data/6737

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Machinelearning from us


Telegram Machinelearning
FROM USA