Telegram Group & Telegram Channel
Problem: Let A be an unsorted array of n floating numbers. Propose an O(n) time algorithm to compute the (floating-point) number x (not necessarily an element of A) for which max|A[i] - x| is as small as possible for all 1 <= i <= n. (Here |y| means absolute value of y)

Solution: The problem statement can be interpreted as finding a point x such that it's distance from the farthest point is minimized (since, |A[i] - x| is given which is actually distance between two point). Note: we don't need to minimize distance from every point, we just need to minimize the distance of the point which is farthest to it. So we try to put our x as close to the farthest point. But in doing so the point which is near may go far. So the optimal solution is finding the minimum point in the array A (let it be named MN) and finding the maximum point of A (let it be named MX) and the result is the mid-point of these two points, i.e x=(MN+MX)/2. Note: All other point between MN and MX will have distance lesser hence we do not bother it. We could not get more optimal point than this one. Now, MX and MN can be easily determined by travelling once the array. Hence the time complexity is O(n).



Happy Coding!!!



tg-me.com/Competitive_Programming_Cpp/42
Create:
Last Update:

Problem: Let A be an unsorted array of n floating numbers. Propose an O(n) time algorithm to compute the (floating-point) number x (not necessarily an element of A) for which max|A[i] - x| is as small as possible for all 1 <= i <= n. (Here |y| means absolute value of y)

Solution: The problem statement can be interpreted as finding a point x such that it's distance from the farthest point is minimized (since, |A[i] - x| is given which is actually distance between two point). Note: we don't need to minimize distance from every point, we just need to minimize the distance of the point which is farthest to it. So we try to put our x as close to the farthest point. But in doing so the point which is near may go far. So the optimal solution is finding the minimum point in the array A (let it be named MN) and finding the maximum point of A (let it be named MX) and the result is the mid-point of these two points, i.e x=(MN+MX)/2. Note: All other point between MN and MX will have distance lesser hence we do not bother it. We could not get more optimal point than this one. Now, MX and MN can be easily determined by travelling once the array. Hence the time complexity is O(n).



Happy Coding!!!

BY Competitive Programming


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Competitive_Programming_Cpp/42

View MORE
Open in Telegram


Competitive Programming Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Competitive Programming from ar


Telegram Competitive Programming
FROM USA