Telegram Group & Telegram Channel
А как же должен выглядеть правильный "AGI-роудмап"?

Напомню неформальное определение интеллекта, которого сейчас придерживаюсь:
Интеллект - это мера эффективности использования данных для приобретения новых навыков.

Это характеристика алгоритма обучения. Я уверен, что мы используем очень плохие алгоритмы - как минимум потому, что они сконструированы людьми вручную. Также, как и когда-то создание признаков вручную, создание алгоритмов должно пасть под ударом мета-лёрнинга. 

Для долгосрочного ресёрча необходим план, но не такой, какие я упоминал раньше. Это должен быть задаче-ориентированный план.

Каждый пункт в этом плане должен состоять из зафиксированных данных и тестовой задачи. Нам нужно начать с простейший постановки, в которой мы умеем обучать модель, превосходящую человека, и постепенно усложнять её следующими способами:

1) Уменьшение тренировочных данных для тестовой задачи
2) Увеличение разнообразия, количества, бесструктурности прочих данных
3) Усложнение тестовой задачи

Вариантов реализации может быть достаточно много, приведу набросок одной из возможных:

Уровень №0: Элементарный RL с нуля
Дано: 10к шагов взаимодействия со CartPole, далее тестируем

Уровень №1: RL с нуля
Дано: 100к шагов взаимодействия со Atari, далее тестируем

======= Текущие алгоритмы находятся здесь =========

Уровень №2: RL с помощью демонстраций
Дано: 100к траекторий игры среднего человека в Atari; 10к шагов взаимодействия с Atari, далее тестируем

Уровень №3: Сложный RL с помощью демонстраций
Дано: N траекторий игр людей в Starcraft; K часов игры против бота, далее тестируем

Уровень №4: Сложный RL с использованием кучи разных данных
Дано: википедия, форумы по starcraft, видео по starcraft; 1 час игры против бота, далее тестируем

Уровень №5: Сложный RL с самостоятельным поиском необходимых данных
Дано: википедия, доступ к чтению интернета на X часов; 1 час игры против бота, далее тестируем

Уровень №6: ASI
Дано: википедия, доступ к чтению интернета на X часов; Текстовый запрос с описанием того, какую задачу нужно решить; N часов на генерацию ответа, далее его проверяет система (данных для такой постановки пока нет).

Далее поступаем по вкусу. 

К сожалению, в пост не влезут все примечания и оговорки по поводу этих уровней, если вам интересно, в чём мотивация того или иного пункта, готов обсудить в комментариях. Кроме того, это лишь набросок, и по мере продвижения по шагам детали могут меняться.

Я верю в то, что существует малоразмерная параметризация обучающего алгоритма, который, если обучать с помощью meta-learning, можно продвинуть по всем этим уровням, каждый раз добиваясь superhuman-level. И если весь мир будет занят прикручиванием human-level моделек, обученных подражать людям, к прикладным задачам, за создание сверхразума придётся взяться кому-то ещё.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/245
Create:
Last Update:

А как же должен выглядеть правильный "AGI-роудмап"?

Напомню неформальное определение интеллекта, которого сейчас придерживаюсь:
Интеллект - это мера эффективности использования данных для приобретения новых навыков.

Это характеристика алгоритма обучения. Я уверен, что мы используем очень плохие алгоритмы - как минимум потому, что они сконструированы людьми вручную. Также, как и когда-то создание признаков вручную, создание алгоритмов должно пасть под ударом мета-лёрнинга. 

Для долгосрочного ресёрча необходим план, но не такой, какие я упоминал раньше. Это должен быть задаче-ориентированный план.

Каждый пункт в этом плане должен состоять из зафиксированных данных и тестовой задачи. Нам нужно начать с простейший постановки, в которой мы умеем обучать модель, превосходящую человека, и постепенно усложнять её следующими способами:

1) Уменьшение тренировочных данных для тестовой задачи
2) Увеличение разнообразия, количества, бесструктурности прочих данных
3) Усложнение тестовой задачи

Вариантов реализации может быть достаточно много, приведу набросок одной из возможных:

Уровень №0: Элементарный RL с нуля
Дано: 10к шагов взаимодействия со CartPole, далее тестируем

Уровень №1: RL с нуля
Дано: 100к шагов взаимодействия со Atari, далее тестируем

======= Текущие алгоритмы находятся здесь =========

Уровень №2: RL с помощью демонстраций
Дано: 100к траекторий игры среднего человека в Atari; 10к шагов взаимодействия с Atari, далее тестируем

Уровень №3: Сложный RL с помощью демонстраций
Дано: N траекторий игр людей в Starcraft; K часов игры против бота, далее тестируем

Уровень №4: Сложный RL с использованием кучи разных данных
Дано: википедия, форумы по starcraft, видео по starcraft; 1 час игры против бота, далее тестируем

Уровень №5: Сложный RL с самостоятельным поиском необходимых данных
Дано: википедия, доступ к чтению интернета на X часов; 1 час игры против бота, далее тестируем

Уровень №6: ASI
Дано: википедия, доступ к чтению интернета на X часов; Текстовый запрос с описанием того, какую задачу нужно решить; N часов на генерацию ответа, далее его проверяет система (данных для такой постановки пока нет).

Далее поступаем по вкусу. 

К сожалению, в пост не влезут все примечания и оговорки по поводу этих уровней, если вам интересно, в чём мотивация того или иного пункта, готов обсудить в комментариях. Кроме того, это лишь набросок, и по мере продвижения по шагам детали могут меняться.

Я верю в то, что существует малоразмерная параметризация обучающего алгоритма, который, если обучать с помощью meta-learning, можно продвинуть по всем этим уровням, каждый раз добиваясь superhuman-level. И если весь мир будет занят прикручиванием human-level моделек, обученных подражать людям, к прикладным задачам, за создание сверхразума придётся взяться кому-то ещё.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/245

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Knowledge Accumulator from ar


Telegram Knowledge Accumulator
FROM USA