Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟SALSA: Стабильная адаптация линейного поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) — метод, разработанный для оптимизации Learning Rate (LR) во время обучения.
Основная концепция метода построена вокруг выполнения линейного поиска для определения наилучшего возможного LR для каждого шага обучения, что дает быструю сходимость и улучшенное обобщение.

Чтобы уменьшить вычислительную нагрузку, Salsa предлагает пошаговый миниатюрный линейный поиск. В нем LR постепенно увеличивается с каждым шагом, а критерий линейного поиска постоянно переоценивается.
Дополнительно, Salsa включает экспоненциальное сглаживание в процесс линейного поиска и устанавливает два экспоненциальных скользящих средних для скорости обучения. Это помогает стабилизировать оптимизацию и уменьшить нестабильность от мини-пакетирования.

Экспериментальные результаты показывают, что Salsa превосходит другие методы оптимизации: 50% сокращение final loss и 1,25 average rank в языковых и графических задачах.
Вычислительные издержки Salsa всего на 3% выше, чем у базового LR метода, что можно воспринимать как незначительным увеличением, учитывая показатели производительности. Salsa достаточно универсален, чтобы использоваться с различными оптимизаторами, и особенно эффективен при обучении современных архитектур, которые чувствительны к скорости обучения.

▶️Локальный запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



📌Лицензирование :  MIT License


🟡Arxiv
🟡Датасет Cifar-10
🟡Youtube video
🖥Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/tensorflowblog/456
Create:
Last Update:

🌟SALSA: Стабильная адаптация линейного поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) — метод, разработанный для оптимизации Learning Rate (LR) во время обучения.
Основная концепция метода построена вокруг выполнения линейного поиска для определения наилучшего возможного LR для каждого шага обучения, что дает быструю сходимость и улучшенное обобщение.

Чтобы уменьшить вычислительную нагрузку, Salsa предлагает пошаговый миниатюрный линейный поиск. В нем LR постепенно увеличивается с каждым шагом, а критерий линейного поиска постоянно переоценивается.
Дополнительно, Salsa включает экспоненциальное сглаживание в процесс линейного поиска и устанавливает два экспоненциальных скользящих средних для скорости обучения. Это помогает стабилизировать оптимизацию и уменьшить нестабильность от мини-пакетирования.

Экспериментальные результаты показывают, что Salsa превосходит другие методы оптимизации: 50% сокращение final loss и 1,25 average rank в языковых и графических задачах.
Вычислительные издержки Salsa всего на 3% выше, чем у базового LR метода, что можно воспринимать как незначительным увеличением, учитывая показатели производительности. Salsa достаточно универсален, чтобы использоваться с различными оптимизаторами, и особенно эффективен при обучении современных архитектур, которые чувствительны к скорости обучения.

▶️Локальный запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



📌Лицензирование :  MIT License


🟡Arxiv
🟡Датасет Cifar-10
🟡Youtube video
🖥Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA

BY TensorFlow








Share with your friend now:
tg-me.com/tensorflowblog/456

View MORE
Open in Telegram


TensorFlow Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

TensorFlow from ar


Telegram TensorFlow
FROM USA