Telegram Group & Telegram Channel
Поговорим про горький урок

Внесу свои 5 копеек по поводу эссе Ричарда Саттона, одного из крупнейших исследователей в ИИ.
Вкратце, эссе о том, что исследователи потратили тонны ресурсов на использование экспертных знаний для решения задач или улучшения алгоритмов, но в итоге лучший результат показывают алгоритмы, которые полезно применяют большие вычислительные ресурсы и полагаются на оптимизацию.

У этого эссе есть и возражения, касающиеся того, что не так уж и мало "экспертных знаний" дошло до нас - например, базовые блоки нейросетей - свёртки, функции активаций, а также алгоритмы обучения - это человеческие идеи. К тому же, всё это работает на инженерной инфраструктуре, которая была спроектирована людьми - операционные системы, процессоры и т.д.

Что могу сказать?

1) Важно разделять инфраструктуру и алгоритмы. Инфраструктура обеспечивает возможность оперировать абстракциями и надёжно проводить расчёты, она может быть как спроектирована, так и придумана человеком, но результат расчётов будет тот же самый.
2) Я бы не стал переоценивать "человеческую экспертизу" в современном ИИ. Если мы говорим о строительных блоках архитектур, так это наоборот, демонстрация нашей ущербности. Мало того, что 99.9% придумывается и выкидывается на помойку, так то, что работает - это предельно простые штуки. Как показывает AutoMLZero - дай тупому брутфорсу перебрать программы из матрично-векторых простейших операций, и он тебе придумает нейросеть. А уж про простоту идеи трансформера вы и так знаете.
3) Говорят, в немалой части задач необходимым фактором успеха был какой-нибудь экспертный костыль вроде симметричных аугментаций. Но причиной этому является то, что алгоритм обучения придуман человеком. Если бы алгоритм был оптимизирован на решаемой задаче, он бы выучил все необходимые костыли самостоятельно, и сделал бы это гораздо эффективнее нас.

На сегодняшний день я полностью согласен с Саттоном, но трактовать его надо максимально широко. Самый неправильный вывод, который тут можно сделать - "нужно просто бесконечно увеличивать трансформер, и это даст любой желаемый результат". Но на самом деле расти должна совместная параметризация архитектуры и алгоритма обучения, оптимизируемая под обучаемость новым задачам. Так мы и придём к успеху.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/101
Create:
Last Update:

Поговорим про горький урок

Внесу свои 5 копеек по поводу эссе Ричарда Саттона, одного из крупнейших исследователей в ИИ.
Вкратце, эссе о том, что исследователи потратили тонны ресурсов на использование экспертных знаний для решения задач или улучшения алгоритмов, но в итоге лучший результат показывают алгоритмы, которые полезно применяют большие вычислительные ресурсы и полагаются на оптимизацию.

У этого эссе есть и возражения, касающиеся того, что не так уж и мало "экспертных знаний" дошло до нас - например, базовые блоки нейросетей - свёртки, функции активаций, а также алгоритмы обучения - это человеческие идеи. К тому же, всё это работает на инженерной инфраструктуре, которая была спроектирована людьми - операционные системы, процессоры и т.д.

Что могу сказать?

1) Важно разделять инфраструктуру и алгоритмы. Инфраструктура обеспечивает возможность оперировать абстракциями и надёжно проводить расчёты, она может быть как спроектирована, так и придумана человеком, но результат расчётов будет тот же самый.
2) Я бы не стал переоценивать "человеческую экспертизу" в современном ИИ. Если мы говорим о строительных блоках архитектур, так это наоборот, демонстрация нашей ущербности. Мало того, что 99.9% придумывается и выкидывается на помойку, так то, что работает - это предельно простые штуки. Как показывает AutoMLZero - дай тупому брутфорсу перебрать программы из матрично-векторых простейших операций, и он тебе придумает нейросеть. А уж про простоту идеи трансформера вы и так знаете.
3) Говорят, в немалой части задач необходимым фактором успеха был какой-нибудь экспертный костыль вроде симметричных аугментаций. Но причиной этому является то, что алгоритм обучения придуман человеком. Если бы алгоритм был оптимизирован на решаемой задаче, он бы выучил все необходимые костыли самостоятельно, и сделал бы это гораздо эффективнее нас.

На сегодняшний день я полностью согласен с Саттоном, но трактовать его надо максимально широко. Самый неправильный вывод, который тут можно сделать - "нужно просто бесконечно увеличивать трансформер, и это даст любой желаемый результат". Но на самом деле расти должна совместная параметризация архитектуры и алгоритма обучения, оптимизируемая под обучаемость новым задачам. Так мы и придём к успеху.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/101

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA