Telegram Group & Telegram Channel
Meta Agent Search [2024] vs Gödel Agent [2024] - какой подход лучше?

Поверх LLM существуют всякие hand-crafted надстройки, позволяющие выжимать больше профита - Chain-of-Thought, LLM Debate и т.д. Ресёрчеры посмекалистее (среди тех, кто занимается LLM) понимают, что нужно искать способы мета-оптимизации этой надстройки. Про одну такую работу я уже писал.

Итак, надстройку можно представить в виде кода функции, которая получает вход и применяет какую-то серию операций с LLM и не только над ней. GPTSwarm подходит к делу основательно - надстройка - это граф, и мы оптимизируем в нём рёбра с помощью RL.

Meta Agent Search идёт по более простому пути - давайте хранить библиотеку программ-агентов, их профит, и просить LLM генерировать новых кандидатов - очень похоже на идею FunSearch. Спустя итерации, агент накидывает в код комбинацию из всяких ответов, проверок, перепроверок, и мета-проверок из LLM, что в результате обходит всех hand-crafted агентов с большим отрывом.

Проблема мета-оптимизации программы в том, что это закодированный человеком фиксированный процесс. Это потенциально ограничивает скорость и пределы сходимости. У этого есть 2 решения - либо делать мета-мета-оптимизацию, либо применить ультимативное оружие - самометаоптимизацию.

Именно этим и решают заняться авторы агента Гёделя. Для появления такого феномена необходимо, чтобы программа, изменяющая код агента, содержалась в коде агента. В таком случае вам не нужно ничего оптимизировать, а только применять получившуюся модель на разных задачах и смотреть на самоулучшающийся ИИ.

Агенту дают возможность не только менять код на ходу, но и работать с содержимым переменных в памяти, в общем, можно разгуляться. По анализу получилось немного лучше Meta Agent Search, интересно, что иногда LLM додумывается отказаться от использования LLM в задаче - оказывается, не такие уж они и глупые. Комментировать результаты сравнения мне сложно, всё усугубляется отсутствием применения агента на hold-out задачах, Пространство ответов у некоторых бенчмарков не такое уж и большое, и замерять на них мета-оптимизатор это странно.

Всё это крайне напоминает "противостояние" между VSML И FME - с одной стороны, мета-оптимизация обучающего алгоритма, а с другой, самомодифицирующаяся матрица весов. На мой взгляд, как и тогда, пока потенциал мета-оптимизации не исчерпан, невыгодно перемещаться на следующий уровень - это гораздо дороже по компьюту. При этом, если мы сможем сделать AGI только на основе мета-оптимизации, экзотические методы уже можно будет не придумывать.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/231
Create:
Last Update:

Meta Agent Search [2024] vs Gödel Agent [2024] - какой подход лучше?

Поверх LLM существуют всякие hand-crafted надстройки, позволяющие выжимать больше профита - Chain-of-Thought, LLM Debate и т.д. Ресёрчеры посмекалистее (среди тех, кто занимается LLM) понимают, что нужно искать способы мета-оптимизации этой надстройки. Про одну такую работу я уже писал.

Итак, надстройку можно представить в виде кода функции, которая получает вход и применяет какую-то серию операций с LLM и не только над ней. GPTSwarm подходит к делу основательно - надстройка - это граф, и мы оптимизируем в нём рёбра с помощью RL.

Meta Agent Search идёт по более простому пути - давайте хранить библиотеку программ-агентов, их профит, и просить LLM генерировать новых кандидатов - очень похоже на идею FunSearch. Спустя итерации, агент накидывает в код комбинацию из всяких ответов, проверок, перепроверок, и мета-проверок из LLM, что в результате обходит всех hand-crafted агентов с большим отрывом.

Проблема мета-оптимизации программы в том, что это закодированный человеком фиксированный процесс. Это потенциально ограничивает скорость и пределы сходимости. У этого есть 2 решения - либо делать мета-мета-оптимизацию, либо применить ультимативное оружие - самометаоптимизацию.

Именно этим и решают заняться авторы агента Гёделя. Для появления такого феномена необходимо, чтобы программа, изменяющая код агента, содержалась в коде агента. В таком случае вам не нужно ничего оптимизировать, а только применять получившуюся модель на разных задачах и смотреть на самоулучшающийся ИИ.

Агенту дают возможность не только менять код на ходу, но и работать с содержимым переменных в памяти, в общем, можно разгуляться. По анализу получилось немного лучше Meta Agent Search, интересно, что иногда LLM додумывается отказаться от использования LLM в задаче - оказывается, не такие уж они и глупые. Комментировать результаты сравнения мне сложно, всё усугубляется отсутствием применения агента на hold-out задачах, Пространство ответов у некоторых бенчмарков не такое уж и большое, и замерять на них мета-оптимизатор это странно.

Всё это крайне напоминает "противостояние" между VSML И FME - с одной стороны, мета-оптимизация обучающего алгоритма, а с другой, самомодифицирующаяся матрица весов. На мой взгляд, как и тогда, пока потенциал мета-оптимизации не исчерпан, невыгодно перемещаться на следующий уровень - это гораздо дороже по компьюту. При этом, если мы сможем сделать AGI только на основе мета-оптимизации, экзотические методы уже можно будет не придумывать.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/231

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Knowledge Accumulator from ca


Telegram Knowledge Accumulator
FROM USA