Telegram Group & Telegram Channel
Forwarded from School of AI
در هنگام توسعه محصولات مرتبط با AI، بسیار پیش می‌آید که می‌خواهید میزان مشابهت (Similarity) یا فاصله (Distance) تعداد زیادی بردار (مثلا مقایسه feature map یک محصول با تمام محصولات موجود در سایت شما) را به کمک روش هایی مثل L2 Distance یا Dot-product بدست آورده و یا به جستجو برای یافتن شبیه ترین بردار ها به یک بردار بپردازید.
تفاوت ذاتی یک محیط عملیاتی حقیقی با یک محیط اکادمیک آزمایشگاهی ممکن است مشکلاتی را در این زمینه برای شما ایجاد کند. مثلا بسیار پیش می‌آید که بردار شما حتی به راحتی در حافظه RAM یک کامپیوتر جا نمی‌شود. یا به دلیل زیاد بودن تعداد بردار ها، جستجو در آنها بسیار کند اتفاق می‌افتد.
برای مقابله با این‌گونه محدودیت ها می‌توانید از کتابخانه faiss که توسط تیم مهندسی Facebook توسعه داده شده است استفاده کرده و در کسری از ثانیه به جستجوی بردار های مشابه در یک فضای برداری بزرگ بپردازید.

https://github.com/facebookresearch/faiss

اطلاعات بیشتر:
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/



tg-me.com/pythonicAI/979
Create:
Last Update:

در هنگام توسعه محصولات مرتبط با AI، بسیار پیش می‌آید که می‌خواهید میزان مشابهت (Similarity) یا فاصله (Distance) تعداد زیادی بردار (مثلا مقایسه feature map یک محصول با تمام محصولات موجود در سایت شما) را به کمک روش هایی مثل L2 Distance یا Dot-product بدست آورده و یا به جستجو برای یافتن شبیه ترین بردار ها به یک بردار بپردازید.
تفاوت ذاتی یک محیط عملیاتی حقیقی با یک محیط اکادمیک آزمایشگاهی ممکن است مشکلاتی را در این زمینه برای شما ایجاد کند. مثلا بسیار پیش می‌آید که بردار شما حتی به راحتی در حافظه RAM یک کامپیوتر جا نمی‌شود. یا به دلیل زیاد بودن تعداد بردار ها، جستجو در آنها بسیار کند اتفاق می‌افتد.
برای مقابله با این‌گونه محدودیت ها می‌توانید از کتابخانه faiss که توسط تیم مهندسی Facebook توسعه داده شده است استفاده کرده و در کسری از ثانیه به جستجوی بردار های مشابه در یک فضای برداری بزرگ بپردازید.

https://github.com/facebookresearch/faiss

اطلاعات بیشتر:
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

BY Pythonic AI




Share with your friend now:
tg-me.com/pythonicAI/979

View MORE
Open in Telegram


Pythonic AI Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Pythonic AI from ca


Telegram Pythonic AI
FROM USA