Telegram Group & Telegram Channel
Почему интересен ARC prize?

Для тех, кто пропустил - неделю назад был запущен конкурс на миллион, в котором нужно решить ARC - простейший "тест на IQ" для человека/алгоритма. В нём нужно по паре-тройке примеров увидеть закономерность и применить её на тестовом образце (см. пример задачи на картинке). Это проверяет алгоритм на обучаемость, а не на запоминание данных из интернета.

Как я уже недавно писал, если в лоб дать такие задачи GPT-4, то она работает достаточно стрёмно. В то же время, лидируют подходы на основе перебора всевозможных последовательностей элементарных операций. Нужно задать набор таких операций, например, из 50 штук, создать 50^4 "программ" и прогнать их на тренировочных образцах, применив успешные к тесту.

Больше года назад, как только я начал вести этот канал, я писал о том, что совместная работа перебора и нейросетей - это очень мощный инструмент. Это жжёт в Go, в математике, в приложениях. Поиску нужен качественный гайд, чтобы тащить, и таким гайдом вполне может быть LLM, как мы увидели на примере FunSearch.

Такой подход применим при решении "NP-задач", для которых мы можем быстро проверить кандидата на решение. Наличие только пары примеров в ARC сильно усложняет проблему, так как "оптимизация" программы будет работать плохо и нам легче на них "переобучиться" программой. Тем не менее, нет сомнений, что скачка в качестве достичь удастся, и такие попытки уже делаются. Осталось только дождаться сабмитов таких подходов в настоящий тест.

Тем не менее, есть проблема применимости такого подхода. Далеко не всегда в реальности мы можем генерировать тысячи/миллионы вариантов с помощью большой модели, применяя поверх какую-то проверялку, потому что быстрой проверялки просто нет. Для применимости этой большой модели в лоб к произвольной задаче нам нужно получить такую, которая как минимум решит ARC без помощи дополнительного перебора.

А зачем именно нужна такая модель? 2 простых юзкейса:

1) Хочется иногда с чашечкой латте провести время за глубокой дискуссией с моделькой, знающей и хорошо понимающей информацию из интернета. Если вы пробовали долго общаться с моделькой типа GPT-4 на сложную тему, вы замечали, что она вообще не вдупляет.
2) Запустить цикл технологической сингулярности

Про второе поговорим позже на этой неделе.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/190
Create:
Last Update:

Почему интересен ARC prize?

Для тех, кто пропустил - неделю назад был запущен конкурс на миллион, в котором нужно решить ARC - простейший "тест на IQ" для человека/алгоритма. В нём нужно по паре-тройке примеров увидеть закономерность и применить её на тестовом образце (см. пример задачи на картинке). Это проверяет алгоритм на обучаемость, а не на запоминание данных из интернета.

Как я уже недавно писал, если в лоб дать такие задачи GPT-4, то она работает достаточно стрёмно. В то же время, лидируют подходы на основе перебора всевозможных последовательностей элементарных операций. Нужно задать набор таких операций, например, из 50 штук, создать 50^4 "программ" и прогнать их на тренировочных образцах, применив успешные к тесту.

Больше года назад, как только я начал вести этот канал, я писал о том, что совместная работа перебора и нейросетей - это очень мощный инструмент. Это жжёт в Go, в математике, в приложениях. Поиску нужен качественный гайд, чтобы тащить, и таким гайдом вполне может быть LLM, как мы увидели на примере FunSearch.

Такой подход применим при решении "NP-задач", для которых мы можем быстро проверить кандидата на решение. Наличие только пары примеров в ARC сильно усложняет проблему, так как "оптимизация" программы будет работать плохо и нам легче на них "переобучиться" программой. Тем не менее, нет сомнений, что скачка в качестве достичь удастся, и такие попытки уже делаются. Осталось только дождаться сабмитов таких подходов в настоящий тест.

Тем не менее, есть проблема применимости такого подхода. Далеко не всегда в реальности мы можем генерировать тысячи/миллионы вариантов с помощью большой модели, применяя поверх какую-то проверялку, потому что быстрой проверялки просто нет. Для применимости этой большой модели в лоб к произвольной задаче нам нужно получить такую, которая как минимум решит ARC без помощи дополнительного перебора.

А зачем именно нужна такая модель? 2 простых юзкейса:

1) Хочется иногда с чашечкой латте провести время за глубокой дискуссией с моделькой, знающей и хорошо понимающей информацию из интернета. Если вы пробовали долго общаться с моделькой типа GPT-4 на сложную тему, вы замечали, что она вообще не вдупляет.
2) Запустить цикл технологической сингулярности

Про второе поговорим позже на этой неделе.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/190

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA