Telegram Group & Telegram Channel
🧩 Задача для дата-сайентистов: "Средняя зарплата" (с подвохом)

📖 Описание задачи

У вас есть DataFrame df с данными о зарплатах сотрудников компании:


import pandas as pd

data = {
'employee_id': [1, 2, 3, 4, 5, 6],
'department': ['IT', 'IT', 'HR', 'HR', 'Finance', 'Finance'],
'salary': [100000, None, 50000, None, 70000, None]
}

df = pd.DataFrame(data)
print(df)


Результат:


employee_id department salary
0 1 IT 100000.0
1 2 IT NaN
2 3 HR 50000.0
3 4 HR NaN
4 5 Finance 70000.0
5 6 Finance NaN


В задаче требуется заполнить пропущенные значения зарплат в каждом отделе медианой зарплаты этого отдела.
Если медиана не может быть рассчитана (например, все значения NaN) — оставить NaN.

Вы пишете следующий код:


df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))


Код выполняется без ошибок, но когда вы проверяете результат:


print(df)


Получаете:


employee_id department salary salary_filled
0 1 IT 100000.0 100000.0
1 2 IT NaN 100000.0
2 3 HR 50000.0 50000.0
3 4 HR NaN 50000.0
4 5 Finance 70000.0 70000.0
5 6 Finance NaN 70000.0


Всё вроде бы верно…

Но через неделю приходит заказчик и говорит:

> «Ты заполнил пропуски, но потом выяснилось, что в реальных данных в одном отделе все зарплаты NaN, а значит медиана не существует.
> А в твоём коде при такой ситуации почему-то появляется 0 вместо NaN!»

📝 Вопросы:

1. Почему появилось 0 (хотя ожидалось NaN)?
2. Как переписать код так, чтобы:
- Если медиана существует → заполнить ею NaN
- Если медиана не существует (все значения NaN) → оставить NaN

---

🎯 Что проверяет задача:

Понимание, как median() работает на пустой серии
Понимание, что fillna(np.nan) может привести к замещению на 0 при приведении типов
Умение работать с группами, где нет данных

---

💡 Подсказка:

Если `x.median()` вернёт `nan`, то `x.fillna(nan)` оставит NaN внутри группы, **но transform может "автоматически" заменить NaN на 0 при сборке результата** (особенность Pandas).

Нужно явно управлять значением медианы, чтобы избежать непредвиденного замещения.

---

Ожидаемое правильное решение:

```python
def fill_with_median_or_nan(x):
med = x.median()
return x.fillna(med if pd.notna(med) else np.nan)

df['salary_filled'] = df.groupby('department')['salary'].transform(fill_with_median_or_nan)
```

Теперь в отделах, где медиана не существует, **NaN останется NaN**, а не превратится в 0.


🔥 Дополнительный подвох (для усложнения):

Что будет, если отдел состоит только из одного сотрудника с NaN?
→ Нужно ли обработать случай, где в отделе всего 1 запись и она NaN?


📝 Вывод:

Эта задача проверяет:

Понимание нюансов заполнения пропусков в Pandas
Внимательность к corner-case ситуациям
Умение работать с группами с частично или полностью отсутствующими данными

🔥 Отличная тренировка внимательности и глубины понимания Pandas!



tg-me.com/machinelearning_interview/1785
Create:
Last Update:

🧩 Задача для дата-сайентистов: "Средняя зарплата" (с подвохом)

📖 Описание задачи

У вас есть DataFrame df с данными о зарплатах сотрудников компании:


import pandas as pd

data = {
'employee_id': [1, 2, 3, 4, 5, 6],
'department': ['IT', 'IT', 'HR', 'HR', 'Finance', 'Finance'],
'salary': [100000, None, 50000, None, 70000, None]
}

df = pd.DataFrame(data)
print(df)


Результат:


employee_id department salary
0 1 IT 100000.0
1 2 IT NaN
2 3 HR 50000.0
3 4 HR NaN
4 5 Finance 70000.0
5 6 Finance NaN


В задаче требуется заполнить пропущенные значения зарплат в каждом отделе медианой зарплаты этого отдела.
Если медиана не может быть рассчитана (например, все значения NaN) — оставить NaN.

Вы пишете следующий код:


df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))


Код выполняется без ошибок, но когда вы проверяете результат:


print(df)


Получаете:


employee_id department salary salary_filled
0 1 IT 100000.0 100000.0
1 2 IT NaN 100000.0
2 3 HR 50000.0 50000.0
3 4 HR NaN 50000.0
4 5 Finance 70000.0 70000.0
5 6 Finance NaN 70000.0


Всё вроде бы верно…

Но через неделю приходит заказчик и говорит:

> «Ты заполнил пропуски, но потом выяснилось, что в реальных данных в одном отделе все зарплаты NaN, а значит медиана не существует.
> А в твоём коде при такой ситуации почему-то появляется 0 вместо NaN!»

📝 Вопросы:

1. Почему появилось 0 (хотя ожидалось NaN)?
2. Как переписать код так, чтобы:
- Если медиана существует → заполнить ею NaN
- Если медиана не существует (все значения NaN) → оставить NaN

---

🎯 Что проверяет задача:

Понимание, как median() работает на пустой серии
Понимание, что fillna(np.nan) может привести к замещению на 0 при приведении типов
Умение работать с группами, где нет данных

---

💡 Подсказка:

Если `x.median()` вернёт `nan`, то `x.fillna(nan)` оставит NaN внутри группы, **но transform может "автоматически" заменить NaN на 0 при сборке результата** (особенность Pandas).

Нужно явно управлять значением медианы, чтобы избежать непредвиденного замещения.

---

Ожидаемое правильное решение:

```python
def fill_with_median_or_nan(x):
med = x.median()
return x.fillna(med if pd.notna(med) else np.nan)

df['salary_filled'] = df.groupby('department')['salary'].transform(fill_with_median_or_nan)
```

Теперь в отделах, где медиана не существует, **NaN останется NaN**, а не превратится в 0.


🔥 Дополнительный подвох (для усложнения):

Что будет, если отдел состоит только из одного сотрудника с NaN?
→ Нужно ли обработать случай, где в отделе всего 1 запись и она NaN?


📝 Вывод:

Эта задача проверяет:

Понимание нюансов заполнения пропусков в Pandas
Внимательность к corner-case ситуациям
Умение работать с группами с частично или полностью отсутствующими данными

🔥 Отличная тренировка внимательности и глубины понимания Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1785

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Machine learning Interview from cn


Telegram Machine learning Interview
FROM USA