Telegram Group & Telegram Channel
🎨 miniDiffusion — Stable Diffusion 3.5 на минималках (и на PyTorch)

miniDiffusion — это предельно упрощённая реализация Stable Diffusion 3.5, написанная с нуля на чистом PyTorch, всего в ~2800 строках кода.

Проект создан для тех, кто хочет разобраться, как работает генерация изображений, без лишней магии и зависимостей.

🧠 Что внутри:
• Полная модель от VAE до DiT, включая тренировочные скрипты
• Поддержка T5 и CLIP энкодеров
Euler scheduler для решения ODE потока шума
• Расчёт метрики FID встроен

📁 Основные файлы:
- dit.py — архитектура DiT
- dit_components.py — эмбеддинги, нормализация, вспомогательные блоки
- attention.py — совместное внимание (Joint Attention)
- noise.py — планировщик шума
- t5_encoder.py, clip.py — текстовые энкодеры
- tokenizer.py — токенизация
- metrics.py — Fréchet Inception Distance
- common.py, common_ds.py — функции и датасет для обучения

📦 Структура:
- model/ — чекпоинты и логи
- encoders/ — предобученные модули (VAE, CLIP и др.)

🛠 Подходит для:
• обучения и экспериментов
• хакинга архитектур
• кастомной тренировки без головной боли

🚀 Если хотите понять, как собрать Stable Diffusion 3.5 "на коленке" — miniDiffusion создан именно для этого.



tg-me.com/data_analysis_ml/3679
Create:
Last Update:

🎨 miniDiffusion — Stable Diffusion 3.5 на минималках (и на PyTorch)

miniDiffusion — это предельно упрощённая реализация Stable Diffusion 3.5, написанная с нуля на чистом PyTorch, всего в ~2800 строках кода.

Проект создан для тех, кто хочет разобраться, как работает генерация изображений, без лишней магии и зависимостей.

🧠 Что внутри:
• Полная модель от VAE до DiT, включая тренировочные скрипты
• Поддержка T5 и CLIP энкодеров
Euler scheduler для решения ODE потока шума
• Расчёт метрики FID встроен

📁 Основные файлы:
- dit.py — архитектура DiT
- dit_components.py — эмбеддинги, нормализация, вспомогательные блоки
- attention.py — совместное внимание (Joint Attention)
- noise.py — планировщик шума
- t5_encoder.py, clip.py — текстовые энкодеры
- tokenizer.py — токенизация
- metrics.py — Fréchet Inception Distance
- common.py, common_ds.py — функции и датасет для обучения

📦 Структура:
- model/ — чекпоинты и логи
- encoders/ — предобученные модули (VAE, CLIP и др.)

🛠 Подходит для:
• обучения и экспериментов
• хакинга архитектур
• кастомной тренировки без головной боли

🚀 Если хотите понять, как собрать Stable Diffusion 3.5 "на коленке" — miniDiffusion создан именно для этого.

BY Анализ данных (Data analysis)




Share with your friend now:
tg-me.com/data_analysis_ml/3679

View MORE
Open in Telegram


Анализ данных Data analysis Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Анализ данных Data analysis from us


Telegram Анализ данных (Data analysis)
FROM USA