Telegram Group & Telegram Channel
🧬 BioReason: биомедицинская нейросеть, которая реально *думает*
От лаборатории Bo Wang (U of Toronto)

BioReason — это reasoning-модель для биомедицинских задач, которая учится делать *глубокие логические выводы* по статьям, графам знаний и научным данным.
💡 Не просто "угадывает", а *обобщает и объясняет*.

📚 Обучена на:
• PubMed abstracts
• PICO фреймах
• SNOMED CT и других онтологиях
• Biomedical Knowledge Graphs

🚀 Особенности:
• Архитектура на основе LM+GNN+reasoning engine
• Сильна в задачах like QA, classification, relation extraction
• Поддержка chain-of-thought + multi-hop inference
• Основана на OpenPretrain и GALACTICA

🧪 Benchmark’и:
+18–22% точности по сравнению с BioLinkBERT и GPT-3.5 на ряде задач (MedQA, PubMedQA, MedNLI и др.)

# Clone the repository
git clone https://github.com/bowang-lab/BioReason.git
cd BioReason

# Install package
pip install -e .


🔗 GitHub: https://github.com/bowang-lab/BioReason
📄 Статья: https://arxiv.org/abs/2406.02491

@data_analysis_ml



tg-me.com/data_analysis_ml/3681
Create:
Last Update:

🧬 BioReason: биомедицинская нейросеть, которая реально *думает*
От лаборатории Bo Wang (U of Toronto)

BioReason — это reasoning-модель для биомедицинских задач, которая учится делать *глубокие логические выводы* по статьям, графам знаний и научным данным.
💡 Не просто "угадывает", а *обобщает и объясняет*.

📚 Обучена на:
• PubMed abstracts
• PICO фреймах
• SNOMED CT и других онтологиях
• Biomedical Knowledge Graphs

🚀 Особенности:
• Архитектура на основе LM+GNN+reasoning engine
• Сильна в задачах like QA, classification, relation extraction
• Поддержка chain-of-thought + multi-hop inference
• Основана на OpenPretrain и GALACTICA

🧪 Benchmark’и:
+18–22% точности по сравнению с BioLinkBERT и GPT-3.5 на ряде задач (MedQA, PubMedQA, MedNLI и др.)

# Clone the repository
git clone https://github.com/bowang-lab/BioReason.git
cd BioReason

# Install package
pip install -e .


🔗 GitHub: https://github.com/bowang-lab/BioReason
📄 Статья: https://arxiv.org/abs/2406.02491

@data_analysis_ml

BY Анализ данных (Data analysis)





Share with your friend now:
tg-me.com/data_analysis_ml/3681

View MORE
Open in Telegram


Анализ данных Data analysis Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Анализ данных Data analysis from us


Telegram Анализ данных (Data analysis)
FROM USA