Telegram Group & Telegram Channel
🌟 Esoteric Language Models: гибридные AR+MDM языковые модели.

Eso-LM - это новый класс языковых моделей, сочетающий автогрегрессионные (AR) и маскированные диффузионные методы (MDM), чтобы сбалансировать качество генерации и скорость работы.

Основная идея состоит в том, чтобы устранить слабые места обеих технологий: медленное выполнение AR-моделей и низкую эффективность MDM при сохранении их ключевых преимуществ - параллелизма.

Архитектура строится на гибридной функции потерь, которая одновременно обучает модель как AR-генератору, так и MDM-декодеру. Это достигается через модифицированный механизм внимания, который динамически переключается между причинным (для AR-фазы) и двусторонним (для MDM-фазы) режимами.

В отличие от классических MDM, Eso-LM использует разреженные матрицы внимания, позволяя кэшировать KV даже во время диффузионного этапа. Эта техника ощутимо сокращает вычислительную нагрузку за счет обработки только тех токенов, которые нужно «демаскировать» на каждом шаге.

Процесс генерации разбит на 2 стадии:

🟢На этапе диффузии модель последовательно раскрывает часть маскированных токенов, используя оптимизированный шедулер, который минимизирует количество проходов через сеть.

🟢На автогрегрессионной фазе, оставшиеся токены дополняются слева направо, с опорой на уже сгенерированный контекст.

Обе стадии используют единый KV-кэш, что исключает повторные вычисления и ускоряет работу в разы. В итоге, для длинных последовательностей (8192 токена), Eso-LM работает в 65 раз быстрее, чем стандартные MDM.

Экспериментальные модели обучали на сетах LM1B (1 млрд. слов) и OpenWebText с использованием токенизаторов BERT и GPT-2 соответственно.

Тесты показали, что Eso-LM не только улучшает скорость, но и устраняет «модовое коллапсирование» (деградацию качества при малом числе шагов), характерное для предыдущих решений (BD3-LM).

На наборе OWT модель достигла уровня perplexity 21.87 при высокой скорости генерации, оставаясь конкурентоспособной как с MDM, так и с AR-моделями.

▶️ Разработчики, а это совместный проект Cornell University, NVIDIA и MBZUAI, опубликовали код для инференса, обучения и оценки Eso-LM в репозитории на Github и веса экспериментальных моделей:

🟠Eso-LM(B)-alpha-1 - чистый MDM с максимальной скоростью, но меньшим качеством;

🟠Eso-LM(B)-alpha-0.25 - баланс между MDM и AR, в которой пожертвовали частью скорости ради перплексии и стабильности.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #EsoLM #HybridModel
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7714
Create:
Last Update:

🌟 Esoteric Language Models: гибридные AR+MDM языковые модели.

Eso-LM - это новый класс языковых моделей, сочетающий автогрегрессионные (AR) и маскированные диффузионные методы (MDM), чтобы сбалансировать качество генерации и скорость работы.

Основная идея состоит в том, чтобы устранить слабые места обеих технологий: медленное выполнение AR-моделей и низкую эффективность MDM при сохранении их ключевых преимуществ - параллелизма.

Архитектура строится на гибридной функции потерь, которая одновременно обучает модель как AR-генератору, так и MDM-декодеру. Это достигается через модифицированный механизм внимания, который динамически переключается между причинным (для AR-фазы) и двусторонним (для MDM-фазы) режимами.

В отличие от классических MDM, Eso-LM использует разреженные матрицы внимания, позволяя кэшировать KV даже во время диффузионного этапа. Эта техника ощутимо сокращает вычислительную нагрузку за счет обработки только тех токенов, которые нужно «демаскировать» на каждом шаге.

Процесс генерации разбит на 2 стадии:

🟢На этапе диффузии модель последовательно раскрывает часть маскированных токенов, используя оптимизированный шедулер, который минимизирует количество проходов через сеть.

🟢На автогрегрессионной фазе, оставшиеся токены дополняются слева направо, с опорой на уже сгенерированный контекст.

Обе стадии используют единый KV-кэш, что исключает повторные вычисления и ускоряет работу в разы. В итоге, для длинных последовательностей (8192 токена), Eso-LM работает в 65 раз быстрее, чем стандартные MDM.

Экспериментальные модели обучали на сетах LM1B (1 млрд. слов) и OpenWebText с использованием токенизаторов BERT и GPT-2 соответственно.

Тесты показали, что Eso-LM не только улучшает скорость, но и устраняет «модовое коллапсирование» (деградацию качества при малом числе шагов), характерное для предыдущих решений (BD3-LM).

На наборе OWT модель достигла уровня perplexity 21.87 при высокой скорости генерации, оставаясь конкурентоспособной как с MDM, так и с AR-моделями.

▶️ Разработчики, а это совместный проект Cornell University, NVIDIA и MBZUAI, опубликовали код для инференса, обучения и оценки Eso-LM в репозитории на Github и веса экспериментальных моделей:

🟠Eso-LM(B)-alpha-1 - чистый MDM с максимальной скоростью, но меньшим качеством;

🟠Eso-LM(B)-alpha-0.25 - баланс между MDM и AR, в которой пожертвовали частью скорости ради перплексии и стабильности.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #EsoLM #HybridModel

BY Machinelearning







Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7714

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Machinelearning from de


Telegram Machinelearning
FROM USA