Telegram Group & Telegram Channel
AI-инфраструктура Авито: практические решения для LLM и VLM

На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.

Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.

Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.

Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.

Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.



tg-me.com/ai_machinelearning_big_data/7762
Create:
Last Update:

AI-инфраструктура Авито: практические решения для LLM и VLM

На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.

Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.

Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.

Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.

Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.

BY Machinelearning





Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7762

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Machinelearning from de


Telegram Machinelearning
FROM USA