Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dialoger_tech/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Сибирские Нейросети: Речевая аналитика и большие языковые модели для бизнеса | Telegram Webview: dialoger_tech/246 -
Telegram Group & Telegram Channel
❤️‍🔥Выступление Ивана Бондаренко на DataFusion 2025:
https://broadcast.comdi.com/watch/rc34lydi
👆Супер краткое содержание:

Докладчик подчеркнул, что, хотя большие языковые модели (LLM) демонстрируют значительный прогресс, их использование связано с высокими затратами на обучение и инференс, что ограничивает их применение. Вместе с тем, развитие больших моделей также способствовало прогрессу малых языковых моделей, которые содержат до 7 миллиардов параметров. Эти модели более доступны для использования и обучения на стандартном оборудовании, и они могут быть эффективными в специализированных задачах.

Докладчик, Иван Бондаренко, представил исследования и внедрение малых генеративных моделей в различных отраслях, включая образование и промышленность. Он отметил, что малые модели могут быть использованы для решения задач, связанных с пониманием и манипулированием текстом, и они могут быть эффективно интегрированы в пайплайны с использованием внешних баз знаний.

Иван также обсудил подходы к обучению малых моделей, такие как Curriculum Learning, и отметил, что малые модели могут быть дообучены на специализированных задачах, что делает их ценными для решения конкретных бизнес-задач. Он подчеркнул, что малые модели могут улучшить экономическую эффективность и ускорить инференс, а также быть полезными для фильтрации и подготовки запросов для больших моделей.

В заключении, Иван отметил, что малые языковые модели могут быть особенно полезны в отраслях, где требуется управление базами знаний, вопросно-ответные системы, особенно с чувствительными документами, и задачи, связанные с извлечением знаний.

10 ключевых слов из доклада
:

1. Малые языковые модели
2. Инференс
3. Пропускная способность
4. Генеративные модели
5. Дообучение
6. Экономическая эффективность
7. Знание о мире
8. Понимание текста
9. Retrieval-Augmented Generation (RAG)
10. Curriculum Learning

10 выводов на основе данного доклада:

1. Сложность и стоимость больших языковых моделей: Большие языковые модели требуют значительных вычислительных мощностей и затрат на обучение и инференс. Их использование может быть проблематично для многих организаций.

2. Проблемы с задержками и комплаенсом: Использование услуг ведущих поставщиков языковых моделей часто сопряжено с проблемами задержек и соблюдения регуляторных требований.

3. Развитие малых языковых моделей: Развитие больших языковых моделей стимулировало прогресс в малых языковых моделях, которые имеют до 7 миллиардов параметров и могут быть эффективно использованы большинством организаций на собственных мощностях.

4. Эффективность малых моделей: Малые языковые модели могут быть не менее эффективны, а иногда даже лучше больших моделей в специализированных областях применения. Они генерируют меньше галлюцинаций и имеют лучшую пропускную способность и дешёвые инференсы.

5. Использование малых моделей в различных отраслях: Компания «Сибирские нейросети» активно внедряет малые генеративные модели в образовательной деятельности, промышленности и других отраслях бизнеса.

6. Эволюция нейросетей: Нейросети имеют длительную историю, начиная с середины XX века, и их сложность постоянно увеличивается. Современные большие языковые модели достигают уровня сложности человеческого мозга.

7. Перенос обучения: Малые языковые модели способны к переносу обучения, что позволяет использовать знания, полученные при решении одной задачи, для решения другой задачи с меньшим набором данных.

8. Экономическая эффективность малых моделей: Малые языковые модели экономически эффективны, так как они не требуют мощного дата-центра и обеспечивают быстрый отклик.

9. Роль базы знаний: Использование внешней базы знаний позволяет снизить требования к размеру модели и улучшить управляемость знаний, что делает малые модели более подходящими для специализированных задач.

10. Внедрение малых моделей в различных отраслях: Малые языковые модели могут быть эффективно внедрены в управление базами знаний, вопросно-ответные системы, особенно для чувствительных документов, и для специализированных задач, где требуется дообучение модели на конкретных данных.



tg-me.com/dialoger_tech/246
Create:
Last Update:

❤️‍🔥Выступление Ивана Бондаренко на DataFusion 2025:
https://broadcast.comdi.com/watch/rc34lydi
👆Супер краткое содержание:

Докладчик подчеркнул, что, хотя большие языковые модели (LLM) демонстрируют значительный прогресс, их использование связано с высокими затратами на обучение и инференс, что ограничивает их применение. Вместе с тем, развитие больших моделей также способствовало прогрессу малых языковых моделей, которые содержат до 7 миллиардов параметров. Эти модели более доступны для использования и обучения на стандартном оборудовании, и они могут быть эффективными в специализированных задачах.

Докладчик, Иван Бондаренко, представил исследования и внедрение малых генеративных моделей в различных отраслях, включая образование и промышленность. Он отметил, что малые модели могут быть использованы для решения задач, связанных с пониманием и манипулированием текстом, и они могут быть эффективно интегрированы в пайплайны с использованием внешних баз знаний.

Иван также обсудил подходы к обучению малых моделей, такие как Curriculum Learning, и отметил, что малые модели могут быть дообучены на специализированных задачах, что делает их ценными для решения конкретных бизнес-задач. Он подчеркнул, что малые модели могут улучшить экономическую эффективность и ускорить инференс, а также быть полезными для фильтрации и подготовки запросов для больших моделей.

В заключении, Иван отметил, что малые языковые модели могут быть особенно полезны в отраслях, где требуется управление базами знаний, вопросно-ответные системы, особенно с чувствительными документами, и задачи, связанные с извлечением знаний.

10 ключевых слов из доклада
:

1. Малые языковые модели
2. Инференс
3. Пропускная способность
4. Генеративные модели
5. Дообучение
6. Экономическая эффективность
7. Знание о мире
8. Понимание текста
9. Retrieval-Augmented Generation (RAG)
10. Curriculum Learning

10 выводов на основе данного доклада:

1. Сложность и стоимость больших языковых моделей: Большие языковые модели требуют значительных вычислительных мощностей и затрат на обучение и инференс. Их использование может быть проблематично для многих организаций.

2. Проблемы с задержками и комплаенсом: Использование услуг ведущих поставщиков языковых моделей часто сопряжено с проблемами задержек и соблюдения регуляторных требований.

3. Развитие малых языковых моделей: Развитие больших языковых моделей стимулировало прогресс в малых языковых моделях, которые имеют до 7 миллиардов параметров и могут быть эффективно использованы большинством организаций на собственных мощностях.

4. Эффективность малых моделей: Малые языковые модели могут быть не менее эффективны, а иногда даже лучше больших моделей в специализированных областях применения. Они генерируют меньше галлюцинаций и имеют лучшую пропускную способность и дешёвые инференсы.

5. Использование малых моделей в различных отраслях: Компания «Сибирские нейросети» активно внедряет малые генеративные модели в образовательной деятельности, промышленности и других отраслях бизнеса.

6. Эволюция нейросетей: Нейросети имеют длительную историю, начиная с середины XX века, и их сложность постоянно увеличивается. Современные большие языковые модели достигают уровня сложности человеческого мозга.

7. Перенос обучения: Малые языковые модели способны к переносу обучения, что позволяет использовать знания, полученные при решении одной задачи, для решения другой задачи с меньшим набором данных.

8. Экономическая эффективность малых моделей: Малые языковые модели экономически эффективны, так как они не требуют мощного дата-центра и обеспечивают быстрый отклик.

9. Роль базы знаний: Использование внешней базы знаний позволяет снизить требования к размеру модели и улучшить управляемость знаний, что делает малые модели более подходящими для специализированных задач.

10. Внедрение малых моделей в различных отраслях: Малые языковые модели могут быть эффективно внедрены в управление базами знаний, вопросно-ответные системы, особенно для чувствительных документов, и для специализированных задач, где требуется дообучение модели на конкретных данных.

BY Сибирские Нейросети: Речевая аналитика и большие языковые модели для бизнеса




Share with your friend now:
tg-me.com/dialoger_tech/246

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

telegram from us


Telegram Сибирские Нейросети: Речевая аналитика и большие языковые модели для бизнеса
FROM USA