Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1001 -
Telegram Group & Telegram Channel
Как понять, какие задачи можно эффективно объединить в мультизадачную модель

Ключевой критерий — наличие общей структуры или схожих признаков между задачами.

🔍 Хорошие кандидаты для мультизадачного обучения:
— Задачи, основанные на одинаковых входных данных (например, текст, изображения).
— Задачи, требующие похожего понимания структуры (например, синтаксического или семантического анализа в NLP).
— Задачи, где одна может обогащать представление для другой (например, часть речи ↔️ определение сущностей).

📌 Пример:
В NLP можно объединить задачи классификации тональности, распознавания именованных сущностей и анализа зависимостей — они все используют текст и извлекают структурированную информацию.

🚫 Плохие кандидаты — риск негативного переноса:
— Задачи с разными типами данных и отдельными признаковыми пространствами (например, изображение + аудио без общего контекста).
— Задачи с конфликтующими целями (например, одна требует обобщения, другая — запоминания деталей).

На что ещё обратить внимание:
➡️ Размер и баланс подзадач — мелкие задачи могут быть подавлены.
➡️ Возможность общей архитектуры (shared encoder + task-specific heads).
➡️ Наличие метрик для оценки взаимного влияния задач.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1001
Create:
Last Update:

Как понять, какие задачи можно эффективно объединить в мультизадачную модель

Ключевой критерий — наличие общей структуры или схожих признаков между задачами.

🔍 Хорошие кандидаты для мультизадачного обучения:
— Задачи, основанные на одинаковых входных данных (например, текст, изображения).
— Задачи, требующие похожего понимания структуры (например, синтаксического или семантического анализа в NLP).
— Задачи, где одна может обогащать представление для другой (например, часть речи ↔️ определение сущностей).

📌 Пример:
В NLP можно объединить задачи классификации тональности, распознавания именованных сущностей и анализа зависимостей — они все используют текст и извлекают структурированную информацию.

🚫 Плохие кандидаты — риск негативного переноса:
— Задачи с разными типами данных и отдельными признаковыми пространствами (например, изображение + аудио без общего контекста).
— Задачи с конфликтующими целями (например, одна требует обобщения, другая — запоминания деталей).

На что ещё обратить внимание:
➡️ Размер и баланс подзадач — мелкие задачи могут быть подавлены.
➡️ Возможность общей архитектуры (shared encoder + task-specific heads).
➡️ Наличие метрик для оценки взаимного влияния задач.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1001

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA