Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75 Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1038 -
🤔Что делать, если редкий класс встречается менее 1% случаев и обычное увеличение выборки не помогает
Когда редкий класс очень мал (например, менее 1%), простое увеличение выборки (oversampling) может не решить проблему. В некоторых областях, таких как обнаружение мошенничества или аномалий, редкий класс по своей природе сильно отличается от обычных данных. Традиционные методы создания синтетических примеров могут не передавать сложные «аномальные» паттерны.
В таких случаях лучше использовать методы обнаружения аномалий, которые учатся распознавать нормальное поведение и отмечают отклонения. Если всё же применяете увеличение выборки, важно не создавать искусственные данные, слишком похожие на обычные, чтобы не запутать модель.
Также помогает обучение с учётом стоимости ошибок (cost-sensitive learning), которое сильнее штрафует ошибки на редком классе. Для оценки результатов полезно смотреть специальные метрики, например, количество ложных срабатываний и пропусков именно для редкого класса.
🤔Что делать, если редкий класс встречается менее 1% случаев и обычное увеличение выборки не помогает
Когда редкий класс очень мал (например, менее 1%), простое увеличение выборки (oversampling) может не решить проблему. В некоторых областях, таких как обнаружение мошенничества или аномалий, редкий класс по своей природе сильно отличается от обычных данных. Традиционные методы создания синтетических примеров могут не передавать сложные «аномальные» паттерны.
В таких случаях лучше использовать методы обнаружения аномалий, которые учатся распознавать нормальное поведение и отмечают отклонения. Если всё же применяете увеличение выборки, важно не создавать искусственные данные, слишком похожие на обычные, чтобы не запутать модель.
Также помогает обучение с учётом стоимости ошибок (cost-sensitive learning), которое сильнее штрафует ошибки на редком классе. Для оценки результатов полезно смотреть специальные метрики, например, количество ложных срабатываний и пропусков именно для редкого класса.
You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.
Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.
Библиотека собеса по Data Science | вопросы с собеседований from us