Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75 Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1042 -
👇 Когда стоит рассмотреть использование специализированных решателей вместо стандартных градиентных фреймворков глубокого обучения
Хотя PyTorch или TensorFlow способны справляться со многими задачами с ограничениями, есть ситуации, когда специализированные решатели оказываются более подходящими:
• Комбинаторные или целочисленные ограничения: если необходимо обеспечить дискретность выходных данных или комбинаторную допустимость (например, в задачах планирования или маршрутизации), более эффективными могут быть методы смешанного целочисленного программирования.
• Жёсткие физические или операционные ограничения: в инженерном проектировании или исследовании операций ограничения часто настолько строгие, что естественнее использовать методы вроде ветвей и границ или внутренней точки.
• Высокомерные и связанные между собой ограничения: если ограничения затрагивают множество взаимодействующих переменных (например, потоки в сетях, многопериодное планирование), общие решатели, способные обрабатывать крупномасштабные задачи с ограничениями, могут быть быстрее или надёжнее.
Потенциальные сложности и крайние случаи:
• Сложная интеграция: связать параметры нейросети с внешним решателем требует дополнительных усилий для организации связи или передачи градиентов (некоторые решатели не являются полностью дифференцируемыми).
• Ограниченная масштабируемость: некоторые специализированные решатели могут не справляться с задачами, где размерность проблем или сети очень велика.
👇 Когда стоит рассмотреть использование специализированных решателей вместо стандартных градиентных фреймворков глубокого обучения
Хотя PyTorch или TensorFlow способны справляться со многими задачами с ограничениями, есть ситуации, когда специализированные решатели оказываются более подходящими:
• Комбинаторные или целочисленные ограничения: если необходимо обеспечить дискретность выходных данных или комбинаторную допустимость (например, в задачах планирования или маршрутизации), более эффективными могут быть методы смешанного целочисленного программирования.
• Жёсткие физические или операционные ограничения: в инженерном проектировании или исследовании операций ограничения часто настолько строгие, что естественнее использовать методы вроде ветвей и границ или внутренней точки.
• Высокомерные и связанные между собой ограничения: если ограничения затрагивают множество взаимодействующих переменных (например, потоки в сетях, многопериодное планирование), общие решатели, способные обрабатывать крупномасштабные задачи с ограничениями, могут быть быстрее или надёжнее.
Потенциальные сложности и крайние случаи:
• Сложная интеграция: связать параметры нейросети с внешним решателем требует дополнительных усилий для организации связи или передачи градиентов (некоторые решатели не являются полностью дифференцируемыми).
• Ограниченная масштабируемость: некоторые специализированные решатели могут не справляться с задачами, где размерность проблем или сети очень велика.
In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.
Dump Scam in Leaked Telegram Chat
A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.
Библиотека собеса по Data Science | вопросы с собеседований from us