Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/261 -
Telegram Group & Telegram Channel
Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра



tg-me.com/ds_interview_lib/261
Create:
Last Update:

Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/261

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA