tg-me.com/ds_interview_lib/277
Last Update:
Верно ли, что классический градиентный спуск всегда найдёт глобальный минимум функции потерь и выдаст оптимальные параметры?
Нет, неверно.
Градиентный спуск эффективно работает на выпуклых функциях. В этом случае любой локальный минимум автоматически является глобальным. Однако без выпуклости данный метод оптимизации ничего не гарантирует. При этом невыпуклые функции встречаются повсеместно, в том числе в машинном обучении.
Нередко при обучении градиентный спуск застревает в локальном минимуме и не может найти глобальный. Это означает, что найденное решение может не быть оптимальным. Для того, чтобы снизить вероятность такого исхода, применяются разные техники. Однако 100-процентной гарантии не дают и они.
К вышеуказанным техникам относятся:
▫️выбор удачных начальных параметров;
▫️модификации градиентного спуска (стохастический градиентный спуск (SGD), градиентный спуск с моментом и др.).
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/277