Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/342 -
Telegram Group & Telegram Channel
Как работает градиентный бустинг для регрессии, и как — для классификации?

Основная идея градиентного бустинга заключается в последовательном добавлении простых моделей (например, деревьев решений) так, чтобы каждая последующая модель корректировала ошибки предыдущих.

🔹Для задачи регрессии алгоритм выглядит так:

▫️Всё начинается с простой начальной предсказательной модели, обычно с использованием среднего значения целевой переменной.
▫️Для каждой модели в ансамбле вычисляется градиент функции потерь по отношению к предсказаниям текущей составной модели. Градиент показывает направление наибольшего увеличения ошибки. Соответственно, следующая модель обучается предсказывать отрицательный градиент предыдущих моделей.
▫️Этот процесс повторяется множество раз. Каждая новая модель улучшает предсказательные способности ансамбля.

🔹Для задачи классификации алгоритм почти такой же:

▫️Меняется предмет предсказания — вместо самих меток классов можно использовать их log-правдоподобие.
▫️Градиент функции потерь вычисляется, основываясь на различиях между фактическими классами и предсказанными вероятностями.
▫️Задачей каждой новой модели в ансамбле является уменьшение ошибки путём улучшения оценки вероятности.
▫️Как и в случае регрессии, каждая последующая модель стремится к уменьшению ошибок предыдущих.

#машинное_обучение



tg-me.com/ds_interview_lib/342
Create:
Last Update:

Как работает градиентный бустинг для регрессии, и как — для классификации?

Основная идея градиентного бустинга заключается в последовательном добавлении простых моделей (например, деревьев решений) так, чтобы каждая последующая модель корректировала ошибки предыдущих.

🔹Для задачи регрессии алгоритм выглядит так:

▫️Всё начинается с простой начальной предсказательной модели, обычно с использованием среднего значения целевой переменной.
▫️Для каждой модели в ансамбле вычисляется градиент функции потерь по отношению к предсказаниям текущей составной модели. Градиент показывает направление наибольшего увеличения ошибки. Соответственно, следующая модель обучается предсказывать отрицательный градиент предыдущих моделей.
▫️Этот процесс повторяется множество раз. Каждая новая модель улучшает предсказательные способности ансамбля.

🔹Для задачи классификации алгоритм почти такой же:

▫️Меняется предмет предсказания — вместо самих меток классов можно использовать их log-правдоподобие.
▫️Градиент функции потерь вычисляется, основываясь на различиях между фактическими классами и предсказанными вероятностями.
▫️Задачей каждой новой модели в ансамбле является уменьшение ошибки путём улучшения оценки вероятности.
▫️Как и в случае регрессии, каждая последующая модель стремится к уменьшению ошибок предыдущих.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/342

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA