Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/45 -
Telegram Group & Telegram Channel
Что такое квантизация и бинаризация модели и в чем между ними разница?

Квантизация и бинаризация модели - это методы снижения объема памяти и вычислительной сложности нейронных сетей, путем уменьшения точности представления весов и активаций модели. Вот как они работают:


Квантизация модели:
• Идея: Квантизация заключается в уменьшении точности чисел, используемых для представления весов и активаций модели. Вместо хранения и вычисления чисел с плавающей запятой, мы используем целочисленные числа с ограниченным числом бит.
• Пример: Вместо хранения числа с плавающей запятой 0.753218, мы можем использовать квантованное значение, например, 8-битное целое число 155.
• Плюсы: Квантизация снижает объем памяти и требования к вычислительным ресурсам, что особенно полезно для встраиваемых систем и мобильных устройств.
• Минусы: Это может привести к некоторой потере точности, так как мы снижаем разрешение чисел.


Бинаризация модели:
• Идея: Бинаризация идет еще дальше и заключается в том, чтобы представлять веса и активации как бинарные (0 или 1) значения. Вместо вещественных чисел используются биты. Это делает модель еще более компактной.
• Пример: Вместо числа с плавающей запятой можно использовать всего два значения: 0 и 1.
• Плюсы: Бинаризация дает значительное снижение объема памяти и требований к вычислительным ресурсам. Она подходит для задач, где крайне ограничены ресурсы.
• Минусы: Бинаризация может привести к еще большей потере точности, и сложные модели могут стать непригодными для задач с высокими требованиями к точности.
Оба метода, квантизация и бинаризация, имеют свои компромиссы между размером модели и ее производительностью. Их выбор зависит от конкретных потребностей приложения и доступных ресурсов.



tg-me.com/ds_interview_lib/45
Create:
Last Update:

Что такое квантизация и бинаризация модели и в чем между ними разница?

Квантизация и бинаризация модели - это методы снижения объема памяти и вычислительной сложности нейронных сетей, путем уменьшения точности представления весов и активаций модели. Вот как они работают:


Квантизация модели:
• Идея: Квантизация заключается в уменьшении точности чисел, используемых для представления весов и активаций модели. Вместо хранения и вычисления чисел с плавающей запятой, мы используем целочисленные числа с ограниченным числом бит.
• Пример: Вместо хранения числа с плавающей запятой 0.753218, мы можем использовать квантованное значение, например, 8-битное целое число 155.
• Плюсы: Квантизация снижает объем памяти и требования к вычислительным ресурсам, что особенно полезно для встраиваемых систем и мобильных устройств.
• Минусы: Это может привести к некоторой потере точности, так как мы снижаем разрешение чисел.


Бинаризация модели:
• Идея: Бинаризация идет еще дальше и заключается в том, чтобы представлять веса и активации как бинарные (0 или 1) значения. Вместо вещественных чисел используются биты. Это делает модель еще более компактной.
• Пример: Вместо числа с плавающей запятой можно использовать всего два значения: 0 и 1.
• Плюсы: Бинаризация дает значительное снижение объема памяти и требований к вычислительным ресурсам. Она подходит для задач, где крайне ограничены ресурсы.
• Минусы: Бинаризация может привести к еще большей потере точности, и сложные модели могут стать непригодными для задач с высокими требованиями к точности.
Оба метода, квантизация и бинаризация, имеют свои компромиссы между размером модели и ее производительностью. Их выбор зависит от конкретных потребностей приложения и доступных ресурсов.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/45

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA