Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/452 -
Telegram Group & Telegram Channel
Вы можете коротко рассказать, как онлайн-кинотеатры подбирают нам кино на вечер?

Онлайн-кинотеатры используют рекомендательные системы для подбора фильмов на основе предпочтений пользователей. Существует три основных типа рекомендательных систем:

▪️Фильтрация по популярности.
В такой системе рекомендуются фильмы с высоким рейтингом, без учета индивидуальных предпочтений.

▪️Фильтрация на основе содержания.
Система анализирует фильмы, которые пользователь смотрел ранее, и предлагает похожие фильмы (например, по жанру или актерам).

▪️Коллаборативная фильтрация.
Система находит пользователей с похожими вкусами и рекомендует фильмы, которые понравились им. Существует два вида коллаборативной фильтрации:
▫️User-based — рекомендации на основе предпочтений похожих пользователей.
▫️Item-based — рекомендации на основе сходства фильмов. Сходство определяется на базе предпочтений всех пользователей, которые оставили свои оценки.

Для коллаборативной фильтрации часто используется алгоритм k-ближайших соседей (KNN) для определения сходства между фильмами или пользователями.

🔹Пример работы системы:

▪️Создаётся матрица предпочтений пользователей и фильмов.
▪️Используется алгоритм KNN для нахождения ближайших соседей.
▪️Подбираются фильмы с наибольшим сходством с уже просмотренными фильмами.

Так, если вы посмотрели фильм «Матрица», система может порекомендовать другие фильмы с Киану Ривзом или в жанре научной фантастики.

#машинное_обучение



tg-me.com/ds_interview_lib/452
Create:
Last Update:

Вы можете коротко рассказать, как онлайн-кинотеатры подбирают нам кино на вечер?

Онлайн-кинотеатры используют рекомендательные системы для подбора фильмов на основе предпочтений пользователей. Существует три основных типа рекомендательных систем:

▪️Фильтрация по популярности.
В такой системе рекомендуются фильмы с высоким рейтингом, без учета индивидуальных предпочтений.

▪️Фильтрация на основе содержания.
Система анализирует фильмы, которые пользователь смотрел ранее, и предлагает похожие фильмы (например, по жанру или актерам).

▪️Коллаборативная фильтрация.
Система находит пользователей с похожими вкусами и рекомендует фильмы, которые понравились им. Существует два вида коллаборативной фильтрации:
▫️User-based — рекомендации на основе предпочтений похожих пользователей.
▫️Item-based — рекомендации на основе сходства фильмов. Сходство определяется на базе предпочтений всех пользователей, которые оставили свои оценки.

Для коллаборативной фильтрации часто используется алгоритм k-ближайших соседей (KNN) для определения сходства между фильмами или пользователями.

🔹Пример работы системы:

▪️Создаётся матрица предпочтений пользователей и фильмов.
▪️Используется алгоритм KNN для нахождения ближайших соседей.
▪️Подбираются фильмы с наибольшим сходством с уже просмотренными фильмами.

Так, если вы посмотрели фильм «Матрица», система может порекомендовать другие фильмы с Киану Ривзом или в жанре научной фантастики.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/452

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA