Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/514 -
Telegram Group & Telegram Channel
Как использовать матрицу ошибок (confusion matrix), чтобы определить производительность модели?

В задаче классификации принято называть положительным класс, который представляет для нас интерес, и отрицательным класс, который нас не интересует (условно). С учётом этого можем описать для каждого объекта в выборке четыре возможных ситуации:

▪️Модель предсказала положительную метку и угадала. Такие объекты будут относиться к true positive (TP).
▪️Модель предсказала положительную метку и ошиблась. Такие объекты будут относиться к false positive (FP).
▪️Модель предсказала отрицательную метку и угадала. Такие объекты будут относиться к true negative (TN).
▪️Модель предсказала отрицательную метку и ошиблась. Такие объекты будут относиться к false negative (FN).

Все эти четыре группы изображают в виде таблицы, которую называют confusion matrix (матрицей ошибок). Она помогает рассчитать следующие метрики, которые могут нам что-то сказать о производительности модели:

▪️Accuracy (Точность): (TP + TN) / (TP + TN + FP + FN) — общая точность модели.
▪️Precision (Точность): TP / (TP + FP) — доля правильно предсказанных положительных объектов среди всех объектов, предсказанных положительным классом.
▪️Recall (Полнота): TP / (TP + FN) — доля правильно найденных положительных объектов среди всех объектов положительного класса.
▪️F1-score: 2 * (Precision * Recall) / (Precision + Recall) — гармоническое среднее между Precision и Recall.

#машинное_обучение



tg-me.com/ds_interview_lib/514
Create:
Last Update:

Как использовать матрицу ошибок (confusion matrix), чтобы определить производительность модели?

В задаче классификации принято называть положительным класс, который представляет для нас интерес, и отрицательным класс, который нас не интересует (условно). С учётом этого можем описать для каждого объекта в выборке четыре возможных ситуации:

▪️Модель предсказала положительную метку и угадала. Такие объекты будут относиться к true positive (TP).
▪️Модель предсказала положительную метку и ошиблась. Такие объекты будут относиться к false positive (FP).
▪️Модель предсказала отрицательную метку и угадала. Такие объекты будут относиться к true negative (TN).
▪️Модель предсказала отрицательную метку и ошиблась. Такие объекты будут относиться к false negative (FN).

Все эти четыре группы изображают в виде таблицы, которую называют confusion matrix (матрицей ошибок). Она помогает рассчитать следующие метрики, которые могут нам что-то сказать о производительности модели:

▪️Accuracy (Точность): (TP + TN) / (TP + TN + FP + FN) — общая точность модели.
▪️Precision (Точность): TP / (TP + FP) — доля правильно предсказанных положительных объектов среди всех объектов, предсказанных положительным классом.
▪️Recall (Полнота): TP / (TP + FN) — доля правильно найденных положительных объектов среди всех объектов положительного класса.
▪️F1-score: 2 * (Precision * Recall) / (Precision + Recall) — гармоническое среднее между Precision и Recall.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/514

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA