Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/520 -
Telegram Group & Telegram Channel
Как выбрать порог для модели классификации?

Выбор порога для модели классификации зависит от конкретной задачи. Можно перечислить следующие используемые методы:

▪️Самое простое решение — взять в качестве порогового значения 0.5. Это будет означать, что если вероятность принадлежности объекта к положительному классу выше 50%, то объект будет классифицирован как положительный.

▪️Использовать ROC-кривую (Receiver Operating Characteristic) и значение AUC (Area Under the Curve), чтобы выбрать порог, который оптимизирует соотношение между истинно положительными и ложноположительными результатами.

▪️Оптимизировать порог на основе Precision-Recall кривой. Это особенно полезно для несбалансированных наборов данных, где важен баланс между точностью (Precision) и полнотой (Recall).

▪️Рассмотреть специфические бизнес-требования и контекст задачи. Например, в задачах медицинской диагностики может быть важно минимизировать ложноотрицательные результаты, а в задачах обнаружения мошенничества — ложноположительные.

▪️Проводить тестирование на валидационной выборке, чтобы понять, как различные пороги влияют на производительность модели в условиях, близких к реальным.

#машинное_обучение



tg-me.com/ds_interview_lib/520
Create:
Last Update:

Как выбрать порог для модели классификации?

Выбор порога для модели классификации зависит от конкретной задачи. Можно перечислить следующие используемые методы:

▪️Самое простое решение — взять в качестве порогового значения 0.5. Это будет означать, что если вероятность принадлежности объекта к положительному классу выше 50%, то объект будет классифицирован как положительный.

▪️Использовать ROC-кривую (Receiver Operating Characteristic) и значение AUC (Area Under the Curve), чтобы выбрать порог, который оптимизирует соотношение между истинно положительными и ложноположительными результатами.

▪️Оптимизировать порог на основе Precision-Recall кривой. Это особенно полезно для несбалансированных наборов данных, где важен баланс между точностью (Precision) и полнотой (Recall).

▪️Рассмотреть специфические бизнес-требования и контекст задачи. Например, в задачах медицинской диагностики может быть важно минимизировать ложноотрицательные результаты, а в задачах обнаружения мошенничества — ложноположительные.

▪️Проводить тестирование на валидационной выборке, чтобы понять, как различные пороги влияют на производительность модели в условиях, близких к реальным.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/520

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA