tg-me.com/ds_interview_lib/532
Last Update:
Коротко опишите процесс обучения нейронной сети
🔹Инициализация весов
Веса в нейронной сети можно инициализировать, например, случайными значениями.
🔹Прямой проход (forward propagation)
На этом шаге входные данные последовательно проходят через все слои нейронной сети. На каждом слое происходит вычисление взвешенной суммы входных значений и применение активационной функции, в результате чего формируется предсказание модели
🔹Вычисление ошибки
Рассчитывается значение функции потерь, которое показывает, насколько предсказание сети отклоняется от истинного значения.
🔹Обратное распространение ошибки (backpropagation)
Этот этап включает в себя вычисление градиентов ошибки относительно каждого веса нейронной сети путём обратного прохождения через все слои модели, начиная с выходного слоя. В результате веса обновляются для минимизации функции потерь.
🔹Повторение процесса
Описанные шаги повторяются на каждом этапе обучения до достижения приемлемого уровня ошибки или заданного количества повторений.
#машинное_обучение
#глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/532