tg-me.com/ds_interview_lib/544
Last Update:
В линейных моделях часто добавляют смещение (bias) к признакам. Объясните, зачем это делается?
Смещение (bias) — это дополнительный параметр модели, который добавляется к линейной комбинации признаков перед применением функции активации. Например, в нейросетях bias добавляется к сумме взвешенных входов перед передачей на следующий слой. Его роль заключается в сдвиге графика функции активации вправо или влево, что помогает сети охватывать более широкий диапазон данных.
Представьте себе простую линейную функцию y = ax + b. Если мы меняем значение a (это эквивалент веса в линейной модели), мы меняем наклон функции. Однако если мы регулируем b (эквивалент смещения), мы сдвигаем всю функцию по оси X. Это позволяет модели лучше подстраиваться под данные, особенно в ситуациях, когда зависимость между переменными не проходит через начало координат.
Смещение также помогает предотвратить проблем в тех случаях, когда все входные признаки равны нулю. Без смещения модель предскажет 0, даже если это не соответствует реальности. Смещение добавляет модели гибкости и позволяет ей корректно работать даже в таких условиях.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/544