Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/603 -
Telegram Group & Telegram Channel
Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?

🔹Количество параметров

Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.

Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.

🔹Структура данных

Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.

Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.

#глубокое_обучение



tg-me.com/ds_interview_lib/603
Create:
Last Update:

Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?

🔹Количество параметров

Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.

Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.

🔹Структура данных

Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.

Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/603

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA