tg-me.com/ds_interview_lib/688
Last Update:
Сравните популярные функции активации с точки зрения вычислительной сложности и поведения градиента.
▪️Сигмоидная функция
Преобразует входные значения в диапазон от 0 до 1, что может представлять вероятность положительного класса. Хотя она полезна для бинарной классификации, функция может страдать от проблемы исчезающих градиентов при крайних значениях входных данных, особенно в глубоких сетях. Вычислительная сложность сигмоидной функции относительно высока, так как она включает экспоненциальные вычисления.
▪️Гиперболический тангенс
Преобразует входные значения в диапазон от -1 до 1. Похожа на сигмоидную функцию, но с выходными значениями, центрированными вокруг нуля, что иногда может улучшить сходимость в нейросетях. Однако, как и сигмоидная функция, она также подвержена проблеме исчезающих градиентов в глубоких сетях. Вычислительная сложность также относительно высока из-за использования экспоненциальных вычислений, аналогично сигмоидной функции.
▪️Функция ReLU
Устанавливает отрицательные входные значения в 0 и сохраняет положительные значения. ReLU является вычислительно эффективной и широко используется, так как помогает избежать проблемы исчезающих градиентов. Вычислительная сложность ReLU низкая, так как она представляет собой простое линейное сравнение с нулем, что делает её предпочтительной для многих задач. Однако ReLU может привести к «умиранию нейронов», если слишком много активаций становятся нулевыми и перестают обучаться.
▪️Функция Leaky ReLU
Модифицирует ReLU, вводя небольшой наклон для отрицательных значений, что помогает смягчить проблему «умирающих нейронов». Leaky ReLU поддерживает более широкий диапазон активации и ненулевой градиент для отрицательных значений, способствуя стабильности модели. Вычислительная сложность Leaky ReLU также низкая, аналогично ReLU, поскольку она требует лишь умножения отрицательных значений на небольшой коэффициент, что незначительно увеличивает нагрузку.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/688