Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/897 -
Telegram Group & Telegram Channel
Что такое аккумулирование градиентов и как оно влияет на Batch Normalization

🔹 Gradient Accumulation — это метод, при котором градиенты суммируются в течение нескольких шагов перед обновлением весов. Он полезен, когда память ограничена и нельзя использовать большие батчи.

Преимущества:
▪️ Позволяет эффективно обучать модели на малом объеме памяти.
▪️ Увеличивает эффективный размер батча, что стабилизирует градиенты.

Влияние на Batch Normalization:
▪️ Batch Normalization рассчитывает статистики (среднее и дисперсию) внутри одного батча. При аккумулировании градиентов батчи становятся меньше, что может привести к менее стабильному обучению.

Как решить проблему?
▪️ Использовать Layer Normalization, которая нормализует данные внутри каждого отдельного примера, а не по батчу.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/897
Create:
Last Update:

Что такое аккумулирование градиентов и как оно влияет на Batch Normalization

🔹 Gradient Accumulation — это метод, при котором градиенты суммируются в течение нескольких шагов перед обновлением весов. Он полезен, когда память ограничена и нельзя использовать большие батчи.

Преимущества:
▪️ Позволяет эффективно обучать модели на малом объеме памяти.
▪️ Увеличивает эффективный размер батча, что стабилизирует градиенты.

Влияние на Batch Normalization:
▪️ Batch Normalization рассчитывает статистики (среднее и дисперсию) внутри одного батча. При аккумулировании градиентов батчи становятся меньше, что может привести к менее стабильному обучению.

Как решить проблему?
▪️ Использовать Layer Normalization, которая нормализует данные внутри каждого отдельного примера, а не по батчу.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/897

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA