Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/899 -
Telegram Group & Telegram Channel
Подходит ли алгоритм K-Nearest Neighbors (KNN) для работы с большими данными

Проблемы KNN на больших данных:
🔹 Высокая вычислительная сложность: поиск ближайших соседей требует сравнения нового объекта со всеми точками обучающего набора, что занимает O(N m) операций (N — количество образцов, m — число признаков).
🔹 Большое потребление памяти: модель хранит весь обучающий набор, что создает проблемы со storage и обработкой.

Оптимизации для ускорения KNN:
🔹 Приближенный поиск (ANN) — использование KD-деревьев, Ball Tree или других структур данных для ускорения поиска.
🔹 Снижение размерности — применение PCA или автоэнкодеров для уменьшения числа признаков.
🔹 Гибридные методы — предварительная кластеризация перед применением KNN или сочетание с деревьями решений.

Альтернатива:
🔹 В продакшене чаще выбирают Random Forest, XGBoost или нейросети, которые после обучения работают быстрее.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/899
Create:
Last Update:

Подходит ли алгоритм K-Nearest Neighbors (KNN) для работы с большими данными

Проблемы KNN на больших данных:
🔹 Высокая вычислительная сложность: поиск ближайших соседей требует сравнения нового объекта со всеми точками обучающего набора, что занимает O(N m) операций (N — количество образцов, m — число признаков).
🔹 Большое потребление памяти: модель хранит весь обучающий набор, что создает проблемы со storage и обработкой.

Оптимизации для ускорения KNN:
🔹 Приближенный поиск (ANN) — использование KD-деревьев, Ball Tree или других структур данных для ускорения поиска.
🔹 Снижение размерности — применение PCA или автоэнкодеров для уменьшения числа признаков.
🔹 Гибридные методы — предварительная кластеризация перед применением KNN или сочетание с деревьями решений.

Альтернатива:
🔹 В продакшене чаще выбирают Random Forest, XGBoost или нейросети, которые после обучения работают быстрее.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/899

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA