Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/98 -
Telegram Group & Telegram Channel
Чем отличаются друг от друга XGBoost, CatBoost и LightGBM?

XGBoost (eXtreme Gradient Boosting):
- Строит деревья одинаковой конкретной глубины. Построение идёт послойно, а затем отсекаются листья.
- Имеет механизмы регуляризации, чтобы предотвращать переобучение.
CatBoost:
- Специализируется на работе с категориальными данными и не требует их предварительной обработки.
- Использует симметричные деревья, что делает процесс обучения быстрее.
LightGBM (Light Gradient Boosting Machine):
- Строит деревья, ориентируясь не на уровень, а на каждый конкретный лист. Добавляет лист, если разделение по нему даёт прирост в информации.
- Использует технику называемую Gradient-based One-Side Sampling (GOSS), которая уменьшает количество данных в процессе обучения. За счёт этого возрастает скорость.
- Есть механизм Exclusive Feature Bundling (EFB), который объединяет взаимоисключающие переменные в одну. Это тоже увеличивает скорость расчёта.

Для лучшего понимания можно посмотреть лекцию



tg-me.com/ds_interview_lib/98
Create:
Last Update:

Чем отличаются друг от друга XGBoost, CatBoost и LightGBM?

XGBoost (eXtreme Gradient Boosting):
- Строит деревья одинаковой конкретной глубины. Построение идёт послойно, а затем отсекаются листья.
- Имеет механизмы регуляризации, чтобы предотвращать переобучение.
CatBoost:
- Специализируется на работе с категориальными данными и не требует их предварительной обработки.
- Использует симметричные деревья, что делает процесс обучения быстрее.
LightGBM (Light Gradient Boosting Machine):
- Строит деревья, ориентируясь не на уровень, а на каждый конкретный лист. Добавляет лист, если разделение по нему даёт прирост в информации.
- Использует технику называемую Gradient-based One-Side Sampling (GOSS), которая уменьшает количество данных в процессе обучения. За счёт этого возрастает скорость.
- Есть механизм Exclusive Feature Bundling (EFB), который объединяет взаимоисключающие переменные в одну. Это тоже увеличивает скорость расчёта.

Для лучшего понимания можно посмотреть лекцию

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/98

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA