Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6315 -
Telegram Group & Telegram Channel
💡 How to: как грамотно группировать YAML-конфигурации в ML-проектах

В ML-проектах множество параметров: данные, модели, обучение, инференс. Чтобы не потеряться в этом хаосе, важно организовать конфигурации понятно и масштабируемо.

🎯 Лучшее решение — использовать связку OmegaConf + Hydra.

OmegaConf: гибкость и структура

OmegaConf создана для сложных ML-пайплайнов и позволяет:

• Объединять несколько YAML-файлов в единую структуру
• Обращаться к полям как через config.model.optimizer, так и config["model"]["optimizer"]
• Использовать проверку типов через dataclasses или Pydantic-моделей

• Пример:
# model.yaml
model:
name: resnet50
optimizer:
type: Adam
lr: 0.001


from omegaconf import OmegaConf
cfg = OmegaConf.load("model.yaml")
print(cfg.model.optimizer.lr) # 0.001


Hydra: управление ML-воркфлоу

Hydra расширяет OmegaConf и упрощает работу с конфигурациями:

• Группировка конфигураций через defaults:
# config.yaml
defaults:
- data: imagenet.yaml
- model: resnet.yaml
- training: adam.yaml


• Структура может быть произвольной:
conf/
├── config.yaml
├── data/imagenet.yaml
├── model/resnet.yaml
├── training/adam.yaml


• Переопределения из командной строки:
python train.py model.optimizer=SGD training.lr=0.01


• Параметрические прогоны (sweeps):
python train.py -m training.lr=0.001,0.01 model.optimizer=Adam,SGD


Это удобно при автоматизированном поиске гиперпараметров.

💬 А как вы организуете свои конфигурации?

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2



tg-me.com/dsproglib/6315
Create:
Last Update:

💡 How to: как грамотно группировать YAML-конфигурации в ML-проектах

В ML-проектах множество параметров: данные, модели, обучение, инференс. Чтобы не потеряться в этом хаосе, важно организовать конфигурации понятно и масштабируемо.

🎯 Лучшее решение — использовать связку OmegaConf + Hydra.

OmegaConf: гибкость и структура

OmegaConf создана для сложных ML-пайплайнов и позволяет:

• Объединять несколько YAML-файлов в единую структуру
• Обращаться к полям как через config.model.optimizer, так и config["model"]["optimizer"]
• Использовать проверку типов через dataclasses или Pydantic-моделей

• Пример:

# model.yaml
model:
name: resnet50
optimizer:
type: Adam
lr: 0.001


from omegaconf import OmegaConf
cfg = OmegaConf.load("model.yaml")
print(cfg.model.optimizer.lr) # 0.001


Hydra: управление ML-воркфлоу

Hydra расширяет OmegaConf и упрощает работу с конфигурациями:

• Группировка конфигураций через defaults:
# config.yaml
defaults:
- data: imagenet.yaml
- model: resnet.yaml
- training: adam.yaml


• Структура может быть произвольной:
conf/
├── config.yaml
├── data/imagenet.yaml
├── model/resnet.yaml
├── training/adam.yaml


• Переопределения из командной строки:
python train.py model.optimizer=SGD training.lr=0.01


• Параметрические прогоны (sweeps):
python train.py -m training.lr=0.001,0.01 model.optimizer=Adam,SGD


Это удобно при автоматизированном поиске гиперпараметров.

💬 А как вы организуете свои конфигурации?

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6315

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA