Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6325 -
Telegram Group & Telegram Channel
🐳 Чек-лист: использование Docker в задачах Data Science

Цель: обеспечить воспроизводимость, удобную работу с зависимостями и подготовку модели к деплою с помощью контейнеризации.

1️⃣ Установка и проверка Docker

🟣Установите Docker Desktop или Docker Engine для Linux

🟣Проверьте установку командой:
  docker --version


🟣 Выполните тестовый запуск:
  docker run hello-world


Это подтвердит, что Docker работает корректно.

2️⃣ Создание Dockerfile для проекта

🟣 Выберите подходящий базовый образ:
python:3.11-slim — компактный образ на Python
jupyter/datascience-notebook — включает Jupyter и популярные библиотеки

🟣Создайте файл Dockerfile и опишите в нём:
  FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt


🟣Убедитесь, что файл requirements.txt содержит все зависимости проекта

3️⃣ Подготовка окружения для воспроизводимости

🟣 Укажите фиксированные версии библиотек в requirements.txt, например:
  pandas==2.2.1
numpy==1.26.0


🟣 Добавьте .dockerignore, чтобы исключить ненужные файлы:
  .git
*.csv
__pycache__/


🟣 Постройте образ:
  docker build -t my-ds-image .


4️⃣ Работа с данными в контейнере

🟣 Подключите локальные данные:
  docker run -v /path/to/data:/app/data my-ds-image


🟣 Запустите Jupyter Notebook внутри контейнера:
  docker run -p 8888:8888 my-ds-image jupyter notebook --ip=0.0.0.0 --allow-root


🟣 При необходимости работы с GPU:
— Убедитесь, что установлен nvidia-docker
— Используйте флаг --gpus all

5️⃣ Тестирование и отладка

🟣 Получите интерактивный доступ к контейнеру:
  docker run -it my-ds-image bash


🟣Проверьте, работают ли библиотеки:
  python -c "import pandas; print(pandas.__version__)"


🟣 Просмотрите логи выполнения контейнера:
  docker logs <container_id>


6️⃣ Деплой модели как API

🟣 Напишите API на Flask или FastAPI (файл app.py)

🟣 Укажите в Dockerfile команду запуска:
  CMD ["python", "app.py"]


🟣 Запустите модель как сервис:
  docker run -p 5000:5000 my-ds-image  


🚩 Полезные инструменты и образы

🟣 Docker Compose — для запуска нескольких контейнеров (например, модель + база данных)

🟣 Образы:
tensorflow/tensorflow:latest-gpu — с поддержкой GPU
continuumio/anaconda3 — включает Anaconda и библиотеки

🔎 Рекомендация

Храните Dockerfile и requirements.txt в репозитории. Это залог воспроизводимости и эффективной командной работы в проектах Data Science.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤‍🔥6👍51



tg-me.com/dsproglib/6325
Create:
Last Update:

🐳 Чек-лист: использование Docker в задачах Data Science

Цель: обеспечить воспроизводимость, удобную работу с зависимостями и подготовку модели к деплою с помощью контейнеризации.

1️⃣ Установка и проверка Docker

🟣Установите Docker Desktop или Docker Engine для Linux

🟣Проверьте установку командой:

  docker --version


🟣 Выполните тестовый запуск:
  docker run hello-world


Это подтвердит, что Docker работает корректно.

2️⃣ Создание Dockerfile для проекта

🟣 Выберите подходящий базовый образ:
python:3.11-slim — компактный образ на Python
jupyter/datascience-notebook — включает Jupyter и популярные библиотеки

🟣Создайте файл Dockerfile и опишите в нём:
  FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt


🟣Убедитесь, что файл requirements.txt содержит все зависимости проекта

3️⃣ Подготовка окружения для воспроизводимости

🟣 Укажите фиксированные версии библиотек в requirements.txt, например:
  pandas==2.2.1
numpy==1.26.0


🟣 Добавьте .dockerignore, чтобы исключить ненужные файлы:
  .git
*.csv
__pycache__/


🟣 Постройте образ:
  docker build -t my-ds-image .


4️⃣ Работа с данными в контейнере

🟣 Подключите локальные данные:
  docker run -v /path/to/data:/app/data my-ds-image


🟣 Запустите Jupyter Notebook внутри контейнера:
  docker run -p 8888:8888 my-ds-image jupyter notebook --ip=0.0.0.0 --allow-root


🟣 При необходимости работы с GPU:
— Убедитесь, что установлен nvidia-docker
— Используйте флаг --gpus all

5️⃣ Тестирование и отладка

🟣 Получите интерактивный доступ к контейнеру:
  docker run -it my-ds-image bash


🟣Проверьте, работают ли библиотеки:
  python -c "import pandas; print(pandas.__version__)"


🟣 Просмотрите логи выполнения контейнера:
  docker logs <container_id>


6️⃣ Деплой модели как API

🟣 Напишите API на Flask или FastAPI (файл app.py)

🟣 Укажите в Dockerfile команду запуска:
  CMD ["python", "app.py"]


🟣 Запустите модель как сервис:
  docker run -p 5000:5000 my-ds-image  


🚩 Полезные инструменты и образы

🟣 Docker Compose — для запуска нескольких контейнеров (например, модель + база данных)

🟣 Образы:
tensorflow/tensorflow:latest-gpu — с поддержкой GPU
continuumio/anaconda3 — включает Anaconda и библиотеки

🔎 Рекомендация

Храните Dockerfile и requirements.txt в репозитории. Это залог воспроизводимости и эффективной командной работы в проектах Data Science.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6325

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA