Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6438 -
Telegram Group & Telegram Channel
Как ускорить вычисления с массивами с помощью NumExpr

NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.

Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.

Вот как NumExpr ускоряет вычисления 🔽

1️⃣ Частичное выполнение в кэше

NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.

Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.

2️⃣ Ускорение с помощью SIMD и VML

Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.

При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.

3️⃣ Поддержка многозадачного масштабирования

NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.

Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne
import numpy as np

# Пример массивов
a = np.random.random(1000000)
b = np.random.random(1000000)

# Обычная операция NumPy
result = np.sin(a) + np.cos(b)

# Эквивалент NumExpr
result_ne = ne.evaluate('sin(a) + cos(b)')


Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍92🔥1



tg-me.com/dsproglib/6438
Create:
Last Update:

Как ускорить вычисления с массивами с помощью NumExpr

NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.

Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.

Вот как NumExpr ускоряет вычисления 🔽

1️⃣ Частичное выполнение в кэше

NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.

Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.

2️⃣ Ускорение с помощью SIMD и VML

Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.

При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.

3️⃣ Поддержка многозадачного масштабирования

NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.

Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:

import numexpr as ne
import numpy as np

# Пример массивов
a = np.random.random(1000000)
b = np.random.random(1000000)

# Обычная операция NumPy
result = np.sin(a) + np.cos(b)

# Эквивалент NumExpr
result_ne = ne.evaluate('sin(a) + cos(b)')


Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6438

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA