Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6553 -
Telegram Group & Telegram Channel
🚨 Pointblank — мощный инструмент для валидации данных

Если вы дата-сайентист, аналитик или инженер данных — эта библиотека точно заслуживает вашего внимания.

С интуитивным и цепочечным API, Pointblank позволяет:
— запускать точечные проверки качества данных,
— отслеживать критичные ошибки,
— автоматически формировать интерактивные отчёты,
— интегрироваться с Slack и другими системами.

Идеально для пайплайнов на pandas, polars или ibis.

Пример базовой валидации:
import pointblank as pb

validation = (
pb.Validate(data=pb.load_dataset("small_table"))
.col_vals_gt(columns="d", value=100) # Значения > 100
.col_vals_le(columns="c", value=5) # Значения <= 5
.col_exists(columns=["date", "date_time"]) # Проверка наличия колонок
.interrogate() # Выполнить валидацию
)

validation.get_tabular_report().show()


Реальный пример на Polars:
import pointblank as pb
import polars as pl

sales_data = pl.read_csv("sales_data.csv")

validation = (
pb.Validate(
data=sales_data,
tbl_name="sales_data",
label="Валидация реальных данных",
thresholds=(0.01, 0.02, 0.05),
actions=pb.Actions(
critical="Критичная ошибка качества данных на шаге {step} ({time})."
),
final_actions=pb.FinalActions(
pb.send_slack_notification("https://hooks.slack.com/services/your/webhook/url")
),
brief=True,
)
.col_vals_between(columns=["price", "quantity"], left=0, right=1000)
.col_vals_not_null(columns=pb.ends_with("_id"))
.col_vals_regex(columns="email", pattern="^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$")
.col_vals_in_set(columns="status", set=["pending", "shipped", "delivered", "returned"])
.conjointly(
lambda df: pb.expr_col("revenue") == pb.expr_col("price") * pb.expr_col("quantity"),
lambda df: pb.expr_col("tax") >= pb.expr_col("revenue") * 0.05
)
.interrogate()
)

# HTML-отчёт можно открыть в браузере:
validation.get_tabular_report().show("browser")


🛠 Установка:
pip install pointblank
# или с нужным бэкендом:
pip install "pointblank[pl]" # с Polars
pip install "pointblank[pd]" # с Pandas
pip install "pointblank[duckdb]" # с DuckDB (через Ibis)
pip install "pointblank[postgres]" # с PostgreSQL


Под капотом

Pointblank работает с Polars, Pandas и Ibis (через Narwhals) — то есть вы можете валидировать данные не только из CSV, но и из баз данных (PostgreSQL, MySQL, DuckDB и др.).

👉 Ссылка на проект: https://clc.to/Ep7oDQ

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6553
Create:
Last Update:

🚨 Pointblank — мощный инструмент для валидации данных

Если вы дата-сайентист, аналитик или инженер данных — эта библиотека точно заслуживает вашего внимания.

С интуитивным и цепочечным API, Pointblank позволяет:
— запускать точечные проверки качества данных,
— отслеживать критичные ошибки,
— автоматически формировать интерактивные отчёты,
— интегрироваться с Slack и другими системами.

Идеально для пайплайнов на pandas, polars или ibis.

Пример базовой валидации:

import pointblank as pb

validation = (
pb.Validate(data=pb.load_dataset("small_table"))
.col_vals_gt(columns="d", value=100) # Значения > 100
.col_vals_le(columns="c", value=5) # Значения <= 5
.col_exists(columns=["date", "date_time"]) # Проверка наличия колонок
.interrogate() # Выполнить валидацию
)

validation.get_tabular_report().show()


Реальный пример на Polars:
import pointblank as pb
import polars as pl

sales_data = pl.read_csv("sales_data.csv")

validation = (
pb.Validate(
data=sales_data,
tbl_name="sales_data",
label="Валидация реальных данных",
thresholds=(0.01, 0.02, 0.05),
actions=pb.Actions(
critical="Критичная ошибка качества данных на шаге {step} ({time})."
),
final_actions=pb.FinalActions(
pb.send_slack_notification("https://hooks.slack.com/services/your/webhook/url")
),
brief=True,
)
.col_vals_between(columns=["price", "quantity"], left=0, right=1000)
.col_vals_not_null(columns=pb.ends_with("_id"))
.col_vals_regex(columns="email", pattern="^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$")
.col_vals_in_set(columns="status", set=["pending", "shipped", "delivered", "returned"])
.conjointly(
lambda df: pb.expr_col("revenue") == pb.expr_col("price") * pb.expr_col("quantity"),
lambda df: pb.expr_col("tax") >= pb.expr_col("revenue") * 0.05
)
.interrogate()
)

# HTML-отчёт можно открыть в браузере:
validation.get_tabular_report().show("browser")


🛠 Установка:
pip install pointblank
# или с нужным бэкендом:
pip install "pointblank[pl]" # с Polars
pip install "pointblank[pd]" # с Pandas
pip install "pointblank[duckdb]" # с DuckDB (через Ibis)
pip install "pointblank[postgres]" # с PostgreSQL


Под капотом

Pointblank работает с Polars, Pandas и Ibis (через Narwhals) — то есть вы можете валидировать данные не только из CSV, но и из баз данных (PostgreSQL, MySQL, DuckDB и др.).

👉 Ссылка на проект: https://clc.to/Ep7oDQ

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6553

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA