Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6582 -
Telegram Group & Telegram Channel
Яндекс начал внедрять в свои сервисы рекомендательные системы нового поколения — на базе больших генеративных моделей.

Это модели с трансформерной архитектурой, заточенной под анализ последовательных действий пользователя (user behavior modeling). Они учитывают в разы больше обезличенного контекста: от последовательности событий до типа взаимодействия.

Подход к обучению модели строился на двух принципах. Во-первых, исследователи смотрели целиком на всю анонимизированную историю пользователя. При этом добавляя глубину контекста взаимодействия: в какое время оно происходило, на каком устройстве был пользователь, на какой страничке продукта.

Историю пользователя можно разложить на некоторую последовательность троек вида (context, item, feedback), где context — это контекст взаимодействия, item — объект, с которым взаимодействует пользователь, а feedback — реакция пользователя на взаимодействие.

Во-вторых, определили две новых задачи задачи обучения. Первая — Next Item Prediction: предсказать, с каким айтемом будет взаимодействовать пользователь. Вторая — Feedback Prediction, предсказывание обратной связи. Подробнее почитать о том, как в компании совместили это в единую задачу обучения, можно на Хабре.

➡️ Что уже получилось

🔵Яндекс Музыка ещё в 2023 году внедрила в рекомендации генеративные нейросети, но новая модель в несколько раз больше. Новые модели в Яндекс Музыке работают онлайн - моментально реагируя на действия пользователей. В результате, повысилось и разнообразие рекомендаций и стало на 20% больше лайков на впервые услышанные в Моей волне треки.

🔵 В Яндекс Маркете алгоритмы теперь учитывают почти два года истории действий. Рекомендации стали учитывать сезонные паттерны — например, напоминать про баскетбольный мяч весной, если полгода назад вы интересовались кроссовками.
На сегодняшний день компания — одна из немногих в мире, кто разработал и внедрил такие системы в продакшн.



tg-me.com/dsproglib/6582
Create:
Last Update:

Яндекс начал внедрять в свои сервисы рекомендательные системы нового поколения — на базе больших генеративных моделей.

Это модели с трансформерной архитектурой, заточенной под анализ последовательных действий пользователя (user behavior modeling). Они учитывают в разы больше обезличенного контекста: от последовательности событий до типа взаимодействия.

Подход к обучению модели строился на двух принципах. Во-первых, исследователи смотрели целиком на всю анонимизированную историю пользователя. При этом добавляя глубину контекста взаимодействия: в какое время оно происходило, на каком устройстве был пользователь, на какой страничке продукта.

Историю пользователя можно разложить на некоторую последовательность троек вида (context, item, feedback), где context — это контекст взаимодействия, item — объект, с которым взаимодействует пользователь, а feedback — реакция пользователя на взаимодействие.

Во-вторых, определили две новых задачи задачи обучения. Первая — Next Item Prediction: предсказать, с каким айтемом будет взаимодействовать пользователь. Вторая — Feedback Prediction, предсказывание обратной связи. Подробнее почитать о том, как в компании совместили это в единую задачу обучения, можно на Хабре.

➡️ Что уже получилось

🔵Яндекс Музыка ещё в 2023 году внедрила в рекомендации генеративные нейросети, но новая модель в несколько раз больше. Новые модели в Яндекс Музыке работают онлайн - моментально реагируя на действия пользователей. В результате, повысилось и разнообразие рекомендаций и стало на 20% больше лайков на впервые услышанные в Моей волне треки.

🔵 В Яндекс Маркете алгоритмы теперь учитывают почти два года истории действий. Рекомендации стали учитывать сезонные паттерны — например, напоминать про баскетбольный мяч весной, если полгода назад вы интересовались кроссовками.
На сегодняшний день компания — одна из немногих в мире, кто разработал и внедрил такие системы в продакшн.

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6582

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA