Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6600 -
Telegram Group & Telegram Channel
🧑‍💻 Промт дня: как находить и обрабатывать выбросы в данных

Выбросы могут быть ошибками сбора, а могут — ключом к инсайту. Главное — заметить их вовремя и обработать правильно.

🎯 Вот промт, чтобы системно подойти к проблеме:
У меня есть датафрейм с числовыми признаками. Помоги:

– Найти выбросы с помощью стандартных методов: Z-оценка, IQR, Tukey fences, modified Z-score
– Построить визуализации: boxplot, scatter, histogram, isolation forest
– Разделить признаки по плотности выбросов
– Предложить: удалять выбросы, каппировать, логарифмировать, заменять
– Проверить, влияют ли выбросы на корреляции и важность признаков
– Обнаружить мультипризнаковые выбросы (multivariate outliers) с помощью: Mahalanobis distance, One-Class SVM, Isolation Forest

Посоветуй стратегии для ML:
– оставлять как есть
– обработать в препроцессинге
– использовать модели, устойчивые к выбросам (например, robust regression)


Особенно важно в задачах регрессии и при работе с сенсорными/временными данными.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6600
Create:
Last Update:

🧑‍💻 Промт дня: как находить и обрабатывать выбросы в данных

Выбросы могут быть ошибками сбора, а могут — ключом к инсайту. Главное — заметить их вовремя и обработать правильно.

🎯 Вот промт, чтобы системно подойти к проблеме:

У меня есть датафрейм с числовыми признаками. Помоги:

– Найти выбросы с помощью стандартных методов: Z-оценка, IQR, Tukey fences, modified Z-score
– Построить визуализации: boxplot, scatter, histogram, isolation forest
– Разделить признаки по плотности выбросов
– Предложить: удалять выбросы, каппировать, логарифмировать, заменять
– Проверить, влияют ли выбросы на корреляции и важность признаков
– Обнаружить мультипризнаковые выбросы (multivariate outliers) с помощью: Mahalanobis distance, One-Class SVM, Isolation Forest

Посоветуй стратегии для ML:
– оставлять как есть
– обработать в препроцессинге
– использовать модели, устойчивые к выбросам (например, robust regression)


Особенно важно в задачах регрессии и при работе с сенсорными/временными данными.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6600

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA